Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Atsunori Oshima is active.

Publication


Featured researches published by Atsunori Oshima.


Nature | 2009

Structure of the connexin 26 gap junction channel at 3.5 Å resolution

Shoji Maeda; So Nakagawa; Michihiro Suga; Eiki Yamashita; Atsunori Oshima; Yoshinori Fujiyoshi; Tomitake Tsukihara

Gap junctions consist of arrays of intercellular channels between adjacent cells that permit the exchange of ions and small molecules. Here we report the crystal structure of the gap junction channel formed by human connexin 26 (Cx26, also known as GJB2) at 3.5 Å resolution, and discuss structural determinants of solute transport through the channel. The density map showed the two membrane-spanning hemichannels and the arrangement of the four transmembrane helices of the six protomers forming each hemichannel. The hemichannels feature a positively charged cytoplasmic entrance, a funnel, a negatively charged transmembrane pathway, and an extracellular cavity. The pore is narrowed at the funnel, which is formed by the six amino-terminal helices lining the wall of the channel, which thus determines the molecular size restriction at the channel entrance. The structure of the Cx26 gap junction channel also has implications for the gating of the channel by the transjunctional voltage.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Three-dimensional structure of a human connexin26 gap junction channel reveals a plug in the vestibule.

Atsunori Oshima; Kazutoshi Tani; Yoko Hiroaki; Yoshinori Fujiyoshi; Gina E. Sosinsky

Connexin molecules form intercellular membrane channels facilitating electronic coupling and the passage of small molecules between adjoining cells. Connexin26 (Cx26) is the second smallest member of the gap junction protein family, and mutations in Cx26 cause certain hereditary human diseases such as skin disorders and hearing loss. Here, we report the electron crystallographic structure of a human Cx26 mutant (M34A). Although crystallization trials used hemichannel preparations, the density map revealed that two hemichannels redocked at their extracellular surfaces into full intercellular channels. These orthorhombic crystals contained two sets of symmetry-related intercellular channels within three lipid bilayers. The 3D map shows a prominent density in the pore of each hemichannel. This density contacts the innermost helices of the surrounding connexin subunits at the bottom of the vestibule. The density map suggests that physical blocking may play an important role that underlies gap junction channel regulation. Our structure allows us to suggest that the two docked hemichannels can be independent and may regulate their activity autonomously with a plug in the vestibule.


Journal of Biological Chemistry | 2003

Roles of Met-34, Cys-64, and Arg-75 in the Assembly of Human Connexin 26 IMPLICATION FOR KEY AMINO ACID RESIDUES FOR CHANNEL FORMATION AND FUNCTION

Atsunori Oshima; Tomoko Doi; Kaoru Mitsuoka; Shoji Maeda; Yoshinori Fujiyoshi

Connexins form a family of membrane proteins that assemble into communication channels and directly connect the cytoplasms of adjoining cells. Malfunctioning of connexin channels often cause disease, such as the mutations M34T and R75W in human connexin 26, which are associated with hereditary deafness. Another residue known to be essential for normal channel activity in the connexin is Cys-64. To obtain structural and functional insights of connexin 26, we studied the roles of these three residues by expressing mutant connexins in insect Sf9 and HeLa cells. The M34T and M34A mutants both formed gap junction plaques, but dye transfer assays showed that the M34A mutant had a significantly reduced permeability, suggesting that for proper channel function a side chain of adequate size is required at this position. We propose that Met-34 is located in the innermost helix of the channel, where it ensures a fully open channel structure via interactions with other transmembrane helices. Gap junction channels formed by the R75W and R75D mutants dissociated upon solubilization in dodecyl maltoside, whereas the R75A mutant remained hexameric. All gap junctions formed by Arg-75 mutants also showed only negligible activity in dye transfer experiments. These results suggest that residue Arg-75 plays a role in subunit interactions needed to retain a functional and stable connexin hexamer. The C64S mutant was suggested to be defective in oligomerization and/or protein folding even in the presence of wild-type connexin.


Structure | 2015

GraDeR: Membrane Protein Complex Preparation for Single-Particle Cryo-EM

Florian Hauer; Christoph Gerle; Niels Fischer; Atsunori Oshima; Kyoko Shinzawa-Itoh; Satoru Shimada; Ken Yokoyama; Yoshinori Fujiyoshi; Holger Stark

We developed a method, named GraDeR, which substantially improves the preparation of membrane protein complexes for structure determination by single-particle cryo-electron microscopy (cryo-EM). In GraDeR, glycerol gradient centrifugation is used for the mild removal of free detergent monomers and micelles from lauryl maltose-neopentyl glycol detergent stabilized membrane complexes, resulting in monodisperse and stable complexes to which standard processes for water-soluble complexes can be applied. We demonstrate the applicability of the method on three different membrane complexes, including the mammalian FoF1 ATP synthase. For this highly dynamic and fragile rotary motor, we show that GraDeR allows visualizing the asymmetry of the F1 domain, which matches the ground state structure of the isolated domain. Therefore, the present cryo-EM structure of FoF1 ATP synthase provides direct structural evidence for Boyers binding change mechanism in the context of the intact enzyme.


FEBS Letters | 2014

Structure and closure of connexin gap junction channels

Atsunori Oshima

Connexin gap junctions comprise assembled channels penetrating two plasma membranes for which gating regulation is associated with a variety of factors, including voltage, pH, Ca2+, and phosphorylation. Functional studies have established that various parts of the connexin peptides are related to channel closure and electrophysiology studies have provided several working models for channel gating. The corresponding structural models supporting these findings, however, are not sufficient because only small numbers of closed connexin structures have been reported. To fully understand the gating mechanisms, the channels should be visualized in both the open and closed states. Electron crystallography and X‐ray crystallography studies recently revealed three‐dimensional structures of connexin channels in a couple of states in which the main difference is the conformation of the N‐terminal domain, which have helped to clarify the structure in regard to channel closure. Here the closure models for connexin gap junction channels inferred from structural and functional studies are described in the context of each domain of the connexin protein associated with gating modulation.


Cell Communication and Adhesion | 2008

Projection Structure of a N-terminal Deletion Mutant of Connexin 26 Channel with Decreased Central Pore Density

Atsunori Oshima; Kazutoshi Tani; Yoko Hiroaki; Yoshinori Fujiyoshi; Gina E. Sosinsky

Gated gap junction channels are important cellular conduits for establishing and maintaining intercellular communication. The three-dimensional structure of a mutant human connexin 26 (Cx26M34A) by electron cryocrystallography revealed a plug-like density in the channel pore suggesting that physical blockage of the pore may be one mechanism of closure (, Proc Natl Acad Sci USA 104: 10034–10039). However, it remains to be determined what part of the sequence contributes to the plug. Here, we present the projection structure of an N-terminus deletion of Cx26M34A missing amino acids 2 to 7 (Cx26M34Adel2-7) crystallized in the same two-dimensional crystal form. A 10 Å resolution projection map of Cx26M34Adel2-7 revealed that the plug density was dramatically reduced in comparison with that found in full-length Cx26 channel. The difference map between the deletion and full-length Cx26M34A channels strongly suggests that the N-terminus of connexin contributes to the plug for the physical closure of gap junction channels.


Journal of Structural Biology | 2009

The M34A mutant of Connexin26 reveals active conductance states in pore-suspending membranes

Oliver Gaßmann; Mohamed Kreir; Cinzia Ambrosi; Jennifer Pranskevich; Atsunori Oshima; Christian Röling; Gina E. Sosinsky; Niels Fertig; Claudia Steinem

Connexin26 (Cx26) is a member of the connexin family, the building blocks for gap junction intercellular channels. These dodecameric assemblies are involved in gap junction-mediated cell-cell communication allowing the passage of ions and small molecules between two neighboring cells. Mutations in Cx26 lead to the disruption of gap junction-mediated intercellular communication with consequences such as hearing loss and skin disorders. We show here that a mutant of Cx26, M34A, forms an active hemichannel in lipid bilayer experiments. A comparison with the Cx26 wild-type is presented. Two different techniques using micro/nano-structured substrates for the formation of pore-suspending lipid membranes are used. We reconstituted the Cx26 wild-type and Cx26M34A into artificial lipid bilayers and observed single channel activity for each technique, with conductance levels of around 35, 70 and 165 pS for the wild-type. The conductance levels of Cx26M34A were found at around 45 and 70 pS.


Nature Communications | 2016

Atomic structure of the innexin-6 gap junction channel determined by cryo-EM

Atsunori Oshima; Kazutoshi Tani; Yoshinori Fujiyoshi

Innexins, a large protein family comprising invertebrate gap junction channels, play an essential role in nervous system development and electrical synapse formation. Here we report the cryo-electron microscopy structures of Caenorhabditis elegans innexin-6 (INX-6) gap junction channels at atomic resolution. We find that the arrangements of the transmembrane helices and extracellular loops of the INX-6 monomeric structure are highly similar to those of connexin-26 (Cx26), despite the lack of significant sequence similarity. The INX-6 gap junction channel comprises hexadecameric subunits but reveals the N-terminal pore funnel, consistent with Cx26. The helix-rich cytoplasmic loop and C-terminus are intercalated one-by-one through an octameric hemichannel, forming a dome-like entrance that interacts with N-terminal loops in the pore. These observations suggest that the INX-6 cytoplasmic domains are cooperatively associated with the N-terminal funnel conformation, and an essential linkage of the N-terminal with channel activity is presumably preserved across gap junction families.


Biophysical Journal | 2010

Analysis of Four Connexin26 Mutant Gap Junctions and Hemichannels Reveals Variations in Hexamer Stability

Cinzia Ambrosi; Daniela Boassa; Jennifer Pranskevich; Amy Smock; Atsunori Oshima; Ji Xu; Bruce J. Nicholson; Gina E. Sosinsky

Connexin26 is a ubiquitous gap junction protein that serves critical homeostatic functions. Four single-site mutations found in the transmembrane helices (M1-M4) cause different types of dysfunctional channels: 1), Cx26T135A in M3 produces a closed channel; 2), Cx26M34A in M1 severely decreases channel activity; 3), Cx26P87L in M2 has been implicated in defective channel gating; and 4), Cx26V84L in M2, a nonsyndromic deafness mutant, retains normal dye coupling and electrophysiological properties but is deficient in IP(3) transfer. These mutations do not affect Cx26 trafficking in mammalian cells, and make normal-appearing channels in baculovirus-infected Sf9 membranes when imaged by negative stain electron microscopy. Upon dodecylmaltoside solubilization of the membrane fraction, Cx26M34A and Cx26V84L are stable as hexamers or dodecamers, but Cx26T135A and Cx26P87L oligomers are not. This instability is also found in Cx26T135A and Cx26P87L hemichannels isolated from mammalian cells. In this work, coexpression of both wild-type Cx26 and Cx26P87L in Sf9 cells rescued P87L hexamer stability. Similarly, in paired Xenopus oocytes, coexpression with wild-type restored function. In contrast, the stability of Cx26T135A hemichannels could not be rescued by coexpression with WT. Thus, T135 and P87 residues are in positions that are important for oligomer stability and can affect gap junction gating.


Journal of Molecular Biology | 2016

Hexadecameric structure of an invertebrate gap junction channel.

Atsunori Oshima; Tomohiro Matsuzawa; Kazuyoshi Murata; Kazutoshi Tani; Yoshinori Fujiyoshi

Innexins are invertebrate-specific gap junction proteins with four transmembrane helices. These proteins oligomerize to constitute intercellular channels that allow for the passage of small signaling molecules associated with neural and muscular electrical activity. In contrast to the large number of structural and functional studies of connexin gap junction channels, few structural studies of recombinant innexin channels are reported. Here we show the three-dimensional structure of two-dimensionally crystallized Caenorhabditis elegans innexin-6 (INX-6) gap junction channels. The N-terminal deleted INX-6 proteins are crystallized in lipid bilayers. The three-dimensional reconstruction determined by cryo-electron crystallography reveals that a single INX-6 gap junction channel comprises 16 subunits, a hexadecamer, in contrast to chordate connexin channels, which comprise 12 subunits. The channel pore diameters at the cytoplasmic entrance and extracellular gap region are larger than those of connexin26. Two bulb densities are observed in each hemichannel, one in the pore and the other at the cytoplasmic side of the hemichannel in the channel pore pathway. These findings imply a structural diversity of gap junction channels among multicellular organisms.

Collaboration


Dive into the Atsunori Oshima's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge