Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Atsuo T. Sasaki is active.

Publication


Featured researches published by Atsuo T. Sasaki.


Journal of Clinical Investigation | 2008

Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer

Arkaitz Carracedo; Li Ma; Julie Teruya-Feldstein; Federico Rojo; Leonardo Salmena; Andrea Alimonti; Ainara Egia; Atsuo T. Sasaki; George Thomas; Sara C. Kozma; Antonella Papa; Caterina Nardella; Lewis C. Cantley; José Baselga; Pier Paolo Pandolfi

Numerous studies have established a causal link between aberrant mammalian target of rapamycin (mTOR) activation and tumorigenesis, indicating that mTOR inhibition may have therapeutic potential. In this study, we show that rapamycin and its analogs activate the MAPK pathway in human cancer, in what represents a novel mTORC1-MAPK feedback loop. We found that tumor samples from patients with biopsy-accessible solid tumors of advanced disease treated with RAD001, a rapamycin derivative, showed an administration schedule-dependent increase in activation of the MAPK pathway. RAD001 treatment also led to MAPK activation in a mouse model of prostate cancer. We further show that rapamycin-induced MAPK activation occurs in both normal cells and cancer cells lines and that this feedback loop depends on an S6K-PI3K-Ras pathway. Significantly, pharmacological inhibition of the MAPK pathway enhanced the antitumoral effect of mTORC1 inhibition by rapamycin in cancer cells in vitro and in a xenograft mouse model. Taken together, our findings identify MAPK activation as a consequence of mTORC1 inhibition and underscore the potential of a combined therapeutic approach with mTORC1 and MAPK inhibitors, currently employed as single agents in the clinic, for the treatment of human cancers.


The EMBO Journal | 1999

The JAK-binding protein JAB inhibits Janus tyrosine kinase activity through binding in the activation loop

Hideo Yasukawa; Hiroyuki Misawa; Hiroshi Sakamoto; Masaaki Masuhara; Atsuo T. Sasaki; Toru Wakioka; Satoshi Ohtsuka; Tsutomu Imaizumi; Tadashi Matsuda; James N. Ihle; Akihiko Yoshimura

The Janus family of protein tyrosine kinases (JAKs) regulate cellular processes involved in cell growth, differentiation and transformation through their association with cytokine receptors. However, compared with other kinases, little is known about cellular regulators of the JAKs. We have recently identified a JAK‐binding protein (JAB) that inhibits JAK signaling in cells. In the studies presented here we demonstrate that JAB specifically binds to the tyrosine residue (Y1007) in the activation loop of JAK2, whose phosphorylation is required for activation of kinase activity. Binding to the phosphorylated activation loop requires the JAB SH2 domain and an additional N‐terminal 12 amino acids (extended SH2 subdomain) containing two residues (Ile68 and Leu75) that are conserved in JAB‐related proteins. An additional N‐terminal 12‐amino‐acid region (kinase inhibitory region) of JAB also contributes to high‐affinity binding to the JAK2 tyrosine kinase domain and is required for inhibition of JAK2 signaling and kinase activity. Our studies define a novel type of regulation of tyrosine kinases and might provide a basis for the design of specific tyrosine kinase inhibitors.


Science | 2011

Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses

Dimitrios Anastasiou; George Poulogiannis; John M. Asara; Matthew B. Boxer; Jian-kang Jiang; Min Shen; Gary Bellinger; Atsuo T. Sasaki; Jason W. Locasale; Douglas S. Auld; Craig J. Thomas; Matthew G. Vander Heiden; Lewis C. Cantley

The glycolytic metabolism of cancers differs from normal tissues, allowing tumor cells to survive under oxidative stress. Control of intracellular reactive oxygen species (ROS) concentrations is critical for cancer cell survival. We show that, in human lung cancer cells, acute increases in intracellular concentrations of ROS caused inhibition of the glycolytic enzyme pyruvate kinase M2 (PKM2) through oxidation of Cys358. This inhibition of PKM2 is required to divert glucose flux into the pentose phosphate pathway and thereby generate sufficient reducing potential for detoxification of ROS. Lung cancer cells in which endogenous PKM2 was replaced with the Cys358 to Ser358 oxidation-resistant mutant exhibited increased sensitivity to oxidative stress and impaired tumor formation in a xenograft model. Besides promoting metabolic changes required for proliferation, the regulatory properties of PKM2 may confer an additional advantage to cancer cells by allowing them to withstand oxidative stress.


Nature Genetics | 2011

Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis

Jason W. Locasale; Alexandra R. Grassian; Tamar Melman; Costas A. Lyssiotis; Katherine R. Mattaini; Adam J. Bass; Gregory J. Heffron; Christian M. Metallo; Taru A. Muranen; Hadar Sharfi; Atsuo T. Sasaki; Dimitrios Anastasiou; Edouard Mullarky; Natalie I. Vokes; Mika Sasaki; Rameen Beroukhim; Gregory Stephanopoulos; Azra H. Ligon; Matthew Meyerson; Andrea L. Richardson; Lynda Chin; Gerhard Wagner; John M. Asara; Joan S. Brugge; Lewis C. Cantley; Matthew G. Vander Heiden

Most tumors exhibit increased glucose metabolism to lactate, however, the extent to which glucose-derived metabolic fluxes are used for alternative processes is poorly understood. Using a metabolomics approach with isotope labeling, we found that in some cancer cells a relatively large amount of glycolytic carbon is diverted into serine and glycine metabolism through phosphoglycerate dehydrogenase (PHGDH). An analysis of human cancers showed that PHGDH is recurrently amplified in a genomic region of focal copy number gain most commonly found in melanoma. Decreasing PHGDH expression impaired proliferation in amplified cell lines. Increased expression was also associated with breast cancer subtypes, and ectopic expression of PHGDH in mammary epithelial cells disrupted acinar morphogenesis and induced other phenotypic alterations that may predispose cells to transformation. Our findings show that the diversion of glycolytic flux into a specific alternate pathway can be selected during tumor development and may contribute to the pathogenesis of human cancer.


Cell | 1999

SOCS3 Is Essential in the Regulation of Fetal Liver Erythropoiesis

Jean Christophe Marine; Catriona McKay; Demin Wang; David J. Topham; Evan Parganas; Hideaki Nakajima; Hélène Pendeville; Hideo Yasukawa; Atsuo T. Sasaki; Akihiko Yoshimura; James N. Ihle

SOCS3 (CIS3/JAB2) is an SH2-containing protein that binds to the activation loop of Janus kinases, inhibiting kinase activity, and thereby suppressing cytokine signaling. During embryonic development, SOCS3 is highly expressed in erythroid lineage cells and is Epo independent. Transgene-mediated expression blocks fetal erythropoiesis, resulting in embryonic lethality. SOCS3 deletion results in an embryonic lethality at 12-16 days associated with marked erythrocytosis. Moreover, the in vitro proliferative capacity of progenitors is greatly increased. SOCS3-deficient fetal liver stem cells can reconstitute hematopoiesis in lethally irradiated adults, indicating that its absence does not disturb bone marrow erythropoiesis. Reconstitution of lymphoid lineages in JAK3-deficient mice also occurs normally. The results demonstrate that SOCS3 is critical in negatively regulating fetal liver hematopoiesis.


Genes to Cells | 1999

Cytokine‐inducible SH2 protein‐3 (CIS3/SOCS3) inhibits Janus tyrosine kinase by binding through the N‐terminal kinase inhibitory region as well as SH2 domain

Atsuo T. Sasaki; Hideo Yasukawa; Asuka Suzuki; Shintaro Kamizono; Takanori Syoda; Ichiko Kinjyo; Mika Sasaki; James A. Johnston; Akihiko Yoshimura

The Janus family of protein tyrosine kinases (JAKs) regulate cellular processes involved in cell growth, differentiation and transformation through their association with cytokine receptors. We have recently identified the JAK‐binding protein, JAB that inhibits various cytokine‐dependent JAK signalling pathways. JAB inhibits JAK2 tyrosine kinase activity by binding to the kinase domain (JH1 domain) through the N‐terminal kinase inhibitory region (KIR) and the SH2 domain. The SH2 domain of JAB has been shown to bind to the phosphorylated Y1007 in the activation loop of JH1. We also identified another JAK‐binding protein, CIS3 (cytokine‐inducible SH2‐protein 3, or SOCS3) that inhibits signalling of various cytokines. However, the mechanism of JAK signal inhibition by CIS3 has not been clarified.


Nature | 2001

Spred is a Sprouty-related suppressor of Ras signalling.

Toru Wakioka; Atsuo T. Sasaki; Reiko Kato; Takanori Shouda; Akira Matsumoto; Kanta Miyoshi; Makoto Tsuneoka; Setsuro Komiya; Roland Baron; Akihiko Yoshimura

Cellular proliferation, and differentiation of cells in response to extracellular signals, are controlled by the signal transduction pathway of Ras, Raf and MAP (mitogen-activated protein) kinase. The mechanisms that regulate this pathway are not well known. Here we describe two structurally similar tyrosine kinase substrates, Spred-1 and Spred-2. These two proteins contain a cysteine-rich domain related to Sprouty (the SPR domain) at the carboxy terminus. In Drosophila, Sprouty inhibits the signalling by receptors of fibroblast growth factor (FGF) and epidermal growth factor (EGF) by suppressing the MAP kinase pathway. Like Sprouty, Spred inhibited growth-factor-mediated activation of MAP kinase. The Ras–MAP kinase pathway is essential in the differentiation of neuronal cells and myocytes. Expression of a dominant negative form of Spred and Spred-antibody microinjection revealed that endogenous Spred regulates differentiation in these types of cells. Spred constitutively associated with Ras but did not prevent activation of Ras or membrane translocation of Raf. Instead, Spred inhibited the activation of MAP kinase by suppressing phosphorylation and activation of Raf. Spred may represent a class of proteins that modulate Ras–Raf interaction and MAP kinase signalling.


Journal of Cell Biology | 2004

Localized Ras signaling at the leading edge regulates PI3K, cell polarity, and directional cell movement

Atsuo T. Sasaki; Cheryl Chun; Kosuke Takeda; Richard A. Firtel

During chemotaxis, receptors and heterotrimeric G-protein subunits are distributed and activated almost uniformly along the cell membrane, whereas PI(3,4,5)P3, the product of phosphatidylinositol 3-kinase (PI3K), accumulates locally at the leading edge. The key intermediate event that creates this strong PI(3,4,5)P3 asymmetry remains unclear. Here, we show that Ras is rapidly and transiently activated in response to chemoattractant stimulation and regulates PI3K activity. Ras activation occurs at the leading edge of chemotaxing cells, and this local activation is independent of the F-actin cytoskeleton, whereas PI3K localization is dependent on F-actin polymerization. Inhibition of Ras results in severe defects in directional movement, indicating that Ras is an upstream component of the cells compass. These results support a mechanism by which localized Ras activation mediates leading edge formation through activation of basal PI3K present on the plasma membrane and other Ras effectors required for chemotaxis. A feedback loop, mediated through localized F-actin polymerization, recruits cytosolic PI3K to the leading edge to amplify the signal.


Journal of Cell Biology | 2007

G protein-independent Ras/PI3K/F-actin circuit regulates basic cell motility

Atsuo T. Sasaki; Chris Janetopoulos; Susan Lee; Pascale G. Charest; Kosuke Takeda; Lauren W. Sundheimer; Ruedi Meili; Peter N. Devreotes; Richard A. Firtel

Phosphoinositide 3-kinase (PI3K)γ and Dictyostelium PI3K are activated via G protein–coupled receptors through binding to the Gβγ subunit and Ras. However, the mechanistic role(s) of Gβγ and Ras in PI3K activation remains elusive. Furthermore, the dynamics and function of PI3K activation in the absence of extracellular stimuli have not been fully investigated. We report that gβ null cells display PI3K and Ras activation, as well as the reciprocal localization of PI3K and PTEN, which lead to local accumulation of PI(3,4,5)P3. Simultaneous imaging analysis reveals that in the absence of extracellular stimuli, autonomous PI3K and Ras activation occur, concurrently, at the same sites where F-actin projection emerges. The loss of PI3K binding to Ras–guanosine triphosphate abolishes this PI3K activation, whereas prevention of PI3K activity suppresses autonomous Ras activation, suggesting that PI3K and Ras form a positive feedback circuit. This circuit is associated with both random cell migration and cytokinesis and may have initially evolved to control stochastic changes in the cytoskeleton.


Journal of Immunology | 2004

Mucosal T Cells Bearing TCRγδ Play a Protective Role in Intestinal Inflammation

Kyoko Inagaki-Ohara; Takatoshi Chinen; Goro Matsuzaki; Atsuo T. Sasaki; Yukiko Sakamoto; Kenji Hiromatsu; Fukumi Nakamura-Uchiyama; Yukifumi Nawa; Akihiko Yoshimura

Intestinal intraepithelial lymphocytes (IEL) bearing TCRγδ represent a major T cell population in the murine intestine. However, the role of γδ IEL in inflammatory bowel diseases (IBD) remains controversial. In this study, we show that γδ IEL is an important protective T cell population against IBD. γδ T cell-deficient (Cδ−/−) mice developed spontaneous colitis with age and showed high susceptibility to Th1-type 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis at a young age. Transfer of γδ IEL to Cδ−/− mice ameliorated TNBS-induced colitis, which correlated with decrease of IFN-γ and TNF-α production and an increase of TGF-β production by IEL. Furthermore, a high level of IL-15, which inhibits activation-induced cell death to terminate inflammation, was expressed more in intestinal epithelial cells (EC) from TNBS-treated Cδ−/− mice than in those from wild-type mice. EC from wild-type mice significantly suppressed the IFN-γ production of IEL from TNBS-treated Cδ−/− mice, whereas EC from TNBS-treated Cδ−/− mice did not. These data indicate that γδ IEL play important roles in controlling IBD by regulating mucosal T cell activation cooperated with EC function. Our study suggests that enhancement of regulatory γδ T cell activity is a possible new cell therapy for colitis.

Collaboration


Dive into the Atsuo T. Sasaki's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Satoshi Kofuji

University of Cincinnati Academic Health Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hirofumi Yoshino

University of Cincinnati Academic Health Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nazanin Majd

University of Cincinnati

View shared research outputs
Top Co-Authors

Avatar

John M. Asara

Beth Israel Deaconess Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge