Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lewis C. Cantley is active.

Publication


Featured researches published by Lewis C. Cantley.


Science | 2009

Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation

Matthew G. Vander Heiden; Lewis C. Cantley; Craig B. Thompson

Fuel Economy for Growing Cells Sophisticated 21st-century analyses of the signaling pathways that control cell growth have led researchers back to the seminal work of Otto Warburg, who discovered in the 1920s that tumor cells generate their energy in an unusual way—by switching from mitochondrial respiration to glycolysis. The advantage conferred by this metabolic switch is puzzling because mitochondrial respiration is a more efficient way to produce ATP. Vander Heiden et al. (p. 1029) review arguments that rapidly growing cells have critical metabolic requirements that extend beyond ATP and that a better understanding of these requirements may shed new light on the “Warburg effect” and ultimately lead to new therapies for cancer. In contrast to normal differentiated cells, which rely primarily on mitochondrial oxidative phosphorylation to generate the energy needed for cellular processes, most cancer cells instead rely on aerobic glycolysis, a phenomenon termed “the Warburg effect.” Aerobic glycolysis is an inefficient way to generate adenosine 5′-triphosphate (ATP), however, and the advantage it confers to cancer cells has been unclear. Here we propose that the metabolism of cancer cells, and indeed all proliferating cells, is adapted to facilitate the uptake and incorporation of nutrients into the biomass (e.g., nucleotides, amino acids, and lipids) needed to produce a new cell. Supporting this idea are recent studies showing that (i) several signaling pathways implicated in cell proliferation also regulate metabolic pathways that incorporate nutrients into biomass; and that (ii) certain cancer-associated mutations enable cancer cells to acquire and metabolize nutrients in a manner conducive to proliferation rather than efficient ATP production. A better understanding of the mechanistic links between cellular metabolism and growth control may ultimately lead to better treatments for human cancer.


Cell | 2007

AKT/PKB signaling: navigating downstream.

Brendan D. Manning; Lewis C. Cantley

The serine/threonine kinase Akt, also known as protein kinase B (PKB), is a central node in cell signaling downstream of growth factors, cytokines, and other cellular stimuli. Aberrant loss or gain of Akt activation underlies the pathophysiological properties of a variety of complex diseases, including type-2 diabetes and cancer. Here, we review the molecular properties of Akt and the approaches used to characterize its true cellular targets. In addition, we discuss those Akt substrates that are most likely to contribute to the diverse cellular roles of Akt, which include cell survival, growth, proliferation, angiogenesis, metabolism, and migration.


Cell | 1991

Oncogenes and signal transduction

Lewis C. Cantley; Kurt R. Auger; Christopher L. Carpenter; Brian C. Duckworth; Andrea Graziani; Rosana Kapeller; Stephen P. Soltoff

The purpose of this review is to incorporate recent discoveries into a general biochemical pathway by wich the protein products of the oncogenes send signals from the cell surface to the nucleus .The protein-tyrosine kinase oncogenes will be the primary focus of the review .However, biochemical connections between the protein tyrosine kinases and oncoproteins of the Ras,Raf,Fos,Jun,and Rel families as well as the protein kinase C family are also discussed .


Nature | 2008

The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth

Heather R. Christofk; Matthew G. Vander Heiden; Marian H. Harris; Arvind Ramanathan; Robert E. Gerszten; Ru Wei; Mark D. Fleming; Stuart L. Schreiber; Lewis C. Cantley

Many tumour cells have elevated rates of glucose uptake but reduced rates of oxidative phosphorylation. This persistence of high lactate production by tumours in the presence of oxygen, known as aerobic glycolysis, was first noted by Otto Warburg more than 75 yr ago. How tumour cells establish this altered metabolic phenotype and whether it is essential for tumorigenesis is as yet unknown. Here we show that a single switch in a splice isoform of the glycolytic enzyme pyruvate kinase is necessary for the shift in cellular metabolism to aerobic glycolysis and that this promotes tumorigenesis. Tumour cells have been shown to express exclusively the embryonic M2 isoform of pyruvate kinase. Here we use short hairpin RNA to knockdown pyruvate kinase M2 expression in human cancer cell lines and replace it with pyruvate kinase M1. Switching pyruvate kinase expression to the M1 (adult) isoform leads to reversal of the Warburg effect, as judged by reduced lactate production and increased oxygen consumption, and this correlates with a reduced ability to form tumours in nude mouse xenografts. These results demonstrate that M2 expression is necessary for aerobic glycolysis and that this metabolic phenotype provides a selective growth advantage for tumour cells in vivo.


Nature | 2006

Ras, PI(3)K and mTOR signalling controls tumour cell growth.

Reuben J. Shaw; Lewis C. Cantley

All eukaryotic cells coordinate cell growth with the availability of nutrients in their environment. The mTOR protein kinase has emerged as a critical growth-control node, receiving stimulatory signals from Ras and phosphatidylinositol-3-OH kinase (PI(3)K) downstream from growth factors, as well as nutrient inputs in the form of amino-acid, glucose and oxygen availability. Notably, components of the Ras and PI(3)K signalling pathways are mutated in most human cancers. The preponderance of mutations in these interconnected pathways suggests that the loss of growth-control checkpoints and promotion of cell survival in nutrient-limited conditions may be an obligate event in tumorigenesis.


Cold Spring Harbor Symposia on Quantitative Biology | 2011

Metabolic pathway alterations that support cell proliferation.

M.G. Vander Heiden; Sophia Y. Lunt; Talya L. Dayton; Brian Prescott Fiske; William J. Israelsen; Katherine R. Mattaini; Natalie I. Vokes; Gregory Stephanopoulos; Lewis C. Cantley; Christian M. Metallo; Jason W. Locasale

Proliferating cells adapt metabolism to support the conversion of available nutrients into biomass. How cell metabolism is regulated to balance the production of ATP, metabolite building blocks, and reducing equivalents remains uncertain. Proliferative metabolism often involves an increased rate of glycolysis. A key regulated step in glycolysis is catalyzed by pyruvate kinase to convert phosphoenolpyruvate (PEP) to pyruvate. Surprisingly, there is strong selection for expression of the less active M2 isoform of pyruvate kinase (PKM2) in tumors and other proliferative tissues. Cell growth signals further decrease PKM2 activity, and cells with less active PKM2 use another pathway with separate regulatory properties to convert PEP to pyruvate. One consequence of using this alternative pathway is an accumulation of 3-phosphoglycerate (3PG) that leads to the diversion of 3PG into the serine biosynthesis pathway. In fact, in some cancers a substantial portion of the total glucose flux is directed toward serine synthesis, and genetic evidence suggests that glucose flux into this pathway can promote cell transformation. Environmental conditions can also influence the pathways that cells use to generate biomass with the source of carbon for lipid synthesis changing based on oxygen availability. Together, these findings argue that distinct metabolic phenotypes exist among proliferating cells, and both genetic and environmental factors influence how metabolism is regulated to support cell growth.


Cell | 1989

PDGF-dependent tyrosine phosphorylation stimulates production of novel polyphosphoinositides in intact cells.

Kurt R. Auger; Leslie A. Serunian; Stephen P. Soltoff; Peter Libby; Lewis C. Cantley

A phosphatidylinositol (PI) kinase activity associated with certain protein tyrosine kinases important in cell proliferation phosphorylates the 3 hydroxyl position of PI to produce phosphatidylinositol-3-phosphate (PI-3-P). Here we report that, in addition to PI-3 kinase activity, anti-phosphotyrosine (alpha-P-tyr) immunoprecipitates from platelet-derived growth factor (PDGF)-stimulated smooth muscle cells (SMC) contain lipid kinase activities that utilize the substrates phosphatidylinositol-4-phosphate (PI-4-P) and phosphatidylinositol-4,5-bisphosphate (PI-4,5-P2). These activities are absent in alpha-P-tyr immunoprecipitates from quiescent SMC. The product of PI-4-P phosphorylation appears to be phosphatidylinositol-3,4-bisphosphate (PI-3,4-P2), a lipid not previously reported. The product of PI-4,5-P2 phosphorylation is phosphatidylinositol-trisphosphate (PIP3). PI-3-P was detected in quiescent SMC and increased only slightly in response to PDGF. PIP3 and the putative PI-3,4-P2 appeared only after the addition of mitogen. Both the temporal production of these novel phospholipids after PDGF stimulation and the observation of the enzymatic activities that produce them in alpha-P-tyr immunoprecipitates suggest that these phospholipids are excellent candidates for mediators of the PDGF mitogenic response.


Nature | 2008

Pyruvate kinase M2 is a phosphotyrosine-binding protein.

Heather R. Christofk; Matthew G. Vander Heiden; Ning Wu; John M. Asara; Lewis C. Cantley

Growth factors stimulate cells to take up excess nutrients and to use them for anabolic processes. The biochemical mechanism by which this is accomplished is not fully understood but it is initiated by phosphorylation of signalling proteins on tyrosine residues. Using a novel proteomic screen for phosphotyrosine-binding proteins, we have made the observation that an enzyme involved in glycolysis, the human M2 (fetal) isoform of pyruvate kinase (PKM2), binds directly and selectively to tyrosine-phosphorylated peptides. We show that binding of phosphotyrosine peptides to PKM2 results in release of the allosteric activator fructose-1,6-bisphosphate, leading to inhibition of PKM2 enzymatic activity. We also provide evidence that this regulation of PKM2 by phosphotyrosine signalling diverts glucose metabolites from energy production to anabolic processes when cells are stimulated by certain growth factors. Collectively, our results indicate that expression of this phosphotyrosine-binding form of pyruvate kinase is critical for rapid growth in cancer cells.


Science | 2011

Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses

Dimitrios Anastasiou; George Poulogiannis; John M. Asara; Matthew B. Boxer; Jian-kang Jiang; Min Shen; Gary Bellinger; Atsuo T. Sasaki; Jason W. Locasale; Douglas S. Auld; Craig J. Thomas; Matthew G. Vander Heiden; Lewis C. Cantley

The glycolytic metabolism of cancers differs from normal tissues, allowing tumor cells to survive under oxidative stress. Control of intracellular reactive oxygen species (ROS) concentrations is critical for cancer cell survival. We show that, in human lung cancer cells, acute increases in intracellular concentrations of ROS caused inhibition of the glycolytic enzyme pyruvate kinase M2 (PKM2) through oxidation of Cys358. This inhibition of PKM2 is required to divert glucose flux into the pentose phosphate pathway and thereby generate sufficient reducing potential for detoxification of ROS. Lung cancer cells in which endogenous PKM2 was replaced with the Cys358 to Ser358 oxidation-resistant mutant exhibited increased sensitivity to oxidative stress and impaired tumor formation in a xenograft model. Besides promoting metabolic changes required for proliferation, the regulatory properties of PKM2 may confer an additional advantage to cancer cells by allowing them to withstand oxidative stress.


Nature Genetics | 2011

Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis

Jason W. Locasale; Alexandra R. Grassian; Tamar Melman; Costas A. Lyssiotis; Katherine R. Mattaini; Adam J. Bass; Gregory J. Heffron; Christian M. Metallo; Taru A. Muranen; Hadar Sharfi; Atsuo T. Sasaki; Dimitrios Anastasiou; Edouard Mullarky; Natalie I. Vokes; Mika Sasaki; Rameen Beroukhim; Gregory Stephanopoulos; Azra H. Ligon; Matthew Meyerson; Andrea L. Richardson; Lynda Chin; Gerhard Wagner; John M. Asara; Joan S. Brugge; Lewis C. Cantley; Matthew G. Vander Heiden

Most tumors exhibit increased glucose metabolism to lactate, however, the extent to which glucose-derived metabolic fluxes are used for alternative processes is poorly understood. Using a metabolomics approach with isotope labeling, we found that in some cancer cells a relatively large amount of glycolytic carbon is diverted into serine and glycine metabolism through phosphoglycerate dehydrogenase (PHGDH). An analysis of human cancers showed that PHGDH is recurrently amplified in a genomic region of focal copy number gain most commonly found in melanoma. Decreasing PHGDH expression impaired proliferation in amplified cell lines. Increased expression was also associated with breast cancer subtypes, and ectopic expression of PHGDH in mammary epithelial cells disrupted acinar morphogenesis and induced other phenotypic alterations that may predispose cells to transformation. Our findings show that the diversion of glycolytic flux into a specific alternate pathway can be selected during tumor development and may contribute to the pathogenesis of human cancer.

Collaboration


Dive into the Lewis C. Cantley's collaboration.

Top Co-Authors

Avatar

Matthew G. Vander Heiden

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John M. Asara

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Stephen P. Soltoff

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christopher L. Carpenter

Beth Israel Deaconess Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge