Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Atsushi B. Tsuji is active.

Publication


Featured researches published by Atsushi B. Tsuji.


Nature Genetics | 1999

A radiation hybrid map of the rat genome containing 5,255 markers

Takeshi Watanabe; Marie Therese Bihoreau; Linda McCarthy; Susanna L. Kiguwa; Haretsugu Hishigaki; Atsushi B. Tsuji; Julie Browne; Yuki Yamasaki; Ayako Mizoguchi-Miyakita; Keiko Oga; Toshihide Ono; Shiro Okuno; Naohide Kanemoto; E. Takahashi; Kazuhiro Tomita; Hiromi Hayashi; Masakazu Adachi; Caleb Webber; Marie Davis; Susanne Kiel; Catherine Knights; Angela L. Smith; Ricky Critcher; Jonathan Miller; Thiru Thangarajah; Philip J R Day; James R. Hudson; Yasuo Irie; Toshihisa Takagi; Yusuke Nakamura

A whole-genome radiation hybrid (RH) panel was used to construct a high-resolution map of the rat genome based on microsatellite and gene markers. These include 3,019 new microsatellite markers described here for the first time and 1,714 microsatellite markers with known genetic locations, allowing comparison and integration of maps from different sources. A robust RH framework map containing 1,030 positions ordered with odds of at least 1,000:1 has been defined as a tool for mapping these markers, and for future RH mapping in the rat. More than 500 genes which have been mapped in mouse and/or human were localized with respect to the rat RH framework, allowing the construction of detailed rat-mouse and rat-human comparative maps and illustrating the power of the RH approach for comparative mapping.


Physics in Medicine and Biology | 2011

Development of a small prototype for a proof-of-concept of OpenPET imaging

Taiga Yamaya; Eiji Yoshida; Taku Inaniwa; Shinji Sato; Yasunori Nakajima; Hidekatsu Wakizaka; Daisuke Kokuryo; Atsushi B. Tsuji; Takayuki Mitsuhashi; Hideyuki Kawai; Hideaki Tashima; Fumihiko Nishikido; Naoko Inadama; Hideo Murayama; Hideaki Haneishi; Mikio Suga; Shoko Kinouchi

The OpenPET geometry is our new idea to visualize a physically opened space between two detector rings. In this paper, we developed the first small prototype to show a proof-of-concept of OpenPET imaging. Two detector rings of 110 mm diameter and 42 mm axial length were placed with a gap of 42 mm. The basic imaging performance was confirmed through phantom studies; the open imaging was realized at the cost of slight loss of axial resolution and 24% loss of sensitivity. For a proof-of-concept of PET image-guided radiation therapy, we carried out the in-beam tests with (11)C radioactive beam irradiation in the heavy ion medical accelerator in Chiba to visualize in situ distribution of primary particles stopped in a phantom. We showed that PET images corresponding to dose distribution were obtained. For an initial proof-of-concept of real-time multimodal imaging, we measured a tumor-inoculated mouse with (18)F-FDG, and an optical image of the mouse body surface was taken during the PET measurement by inserting a digital camera in the ring gap. We confirmed that the tumor in the gap was clearly visualized. The result also showed the extension effect of an axial field-of-view (FOV); a large axial FOV of 126 mm was obtained with the detectors that originally covered only an 84 mm axial FOV. In conclusion, our initial imaging studies showed promising performance of the OpenPET.


PLOS ONE | 2013

Fatty Acid Synthase Is a Key Target in Multiple Essential Tumor Functions of Prostate Cancer: Uptake of Radiolabeled Acetate as a Predictor of the Targeted Therapy Outcome

Yukie Yoshii; Takako Furukawa; Nobuyuki Oyama; Yoko Hasegawa; Yasushi Kiyono; Ryuichi Nishii; Atsuo Waki; Atsushi B. Tsuji; Chizuru Sogawa; Hidekatsu Wakizaka; Toshimitsu Fukumura; Hiroshi Yoshii; Yasuhisa Fujibayashi; Jason S. Lewis; Tsuneo Saga

Fatty acid synthase (FASN) expression is elevated in several cancers, and this over-expression is associated with poor prognosis. Inhibitors of FASN, such as orlistat, reportedly show antitumor effects against cancers that over-express FASN, making FASN a promising therapeutic target. However, large variations in FASN expression levels in individual tumors have been observed, and methods to predict FASN-targeted therapy outcome before treatment are required to avoid unnecessary treatment. In addition, how FASN inhibition affects tumor progression remains unclear. Here, we showed the method to predict FASN-targeted therapy outcome using radiolabeled acetate uptake and presented mechanisms of FASN inhibition with human prostate cancer cell lines, to provide the treatment strategy of FASN-targeted therapy. We revealed that tumor uptake of radiolabeled acetate reflected the FASN expression levels and sensitivity to FASN-targeted therapy with orlistat in vitro and in vivo. FASN-targeted therapy was noticeably effective against tumors with high FASN expression, which was indicated by high acetate uptake. To examine mechanisms, we established FASN knockdown prostate cancer cells by transduction of short-hairpin RNA against FASN and investigated the characteristics by analyses on morphology and cell behavior and microarray-based gene expression profiling. FASN inhibition not only suppressed cell proliferation but prevented pseudopodia formation and suppressed cell adhesion, migration, and invasion. FASN inhibition also suppressed genes involved in production of intracellular second messenger arachidonic acid and androgen hormones, both of which promote tumor progression. Collectively, our data demonstrated that uptake of radiolabeled acetate is a useful predictor of FASN-targeted therapy outcome. This suggests that [1-11C]acetate positron emission tomography (PET) could be a powerful tool to accomplish personalized FASN-targeted therapy by non-invasive visualization of tumor acetate uptake and selection of responsive tumors. FASN-targeted therapy could be an effective treatment to suppress multiple steps related to tumor progression in prostate cancers selected by [1-11C]acetate PET.


Genomics | 2010

Knockdown of COPA, identified by loss-of-function screen, induces apoptosis and suppresses tumor growth in mesothelioma mouse model.

Hitomi Sudo; Atsushi B. Tsuji; Aya Sugyo; Masakazu Kohda; Chizuru Sogawa; Chisato Yoshida; Yoshinobu Harada; Okio Hino; Tsuneo Saga

Malignant mesothelioma is a highly aggressive tumor arising from serosal surfaces of the pleura and is triggered by past exposure to asbestos. Currently, there is no widely accepted treatment for mesothelioma. Development of effective drug treatments for human cancers requires identification of therapeutic molecular targets. We therefore conducted a large-scale functional screening of mesothelioma cells using a genome-wide small interfering RNA library. We determined that knockdown of 39 genes suppressed mesothelioma cell proliferation. At least seven of the 39 genes-COPA, COPB2, EIF3D, POLR2A, PSMA6, RBM8A, and RPL18A-would be involved in anti-apoptotic function. In particular, the COPA protein was highly expressed in some mesothelioma cell lines but not in a pleural mesothelial cell line. COPA knockdown induced apoptosis and suppressed tumor growth in a mesothelioma mouse model. Therefore, COPA may have the potential of a therapeutic target and a new diagnostic marker of mesothelioma.


Clinical and Experimental Pharmacology and Physiology | 2005

MUTATED G-PROTEIN-COUPLED RECEPTOR GPR10 IS RESPONSIBLE FOR THE HYPERPHAGIA/DYSLIPIDAEMIA/OBESITY LOCUS OF Dmo1 IN THE OLETF RAT

Takeshi Watanabe; Mikio Suzuki; Yuki Yamasaki; Shiro Okuno; Haretsugu Hishigaki; Toshihide Ono; Keiko Oga; Ayako Mizoguchi-Miyakita; Atsushi B. Tsuji; Naohide Kanemoto; Shigeyuki Wakitani; Toshihisa Takagi; Yusuke Nakamura; Akira Tanigami

1. We have confirmed the Diabetes Mellitus OLETF type I (Dmo1) effect on hyperphagia, dyslipidaemia and obesity in the Otsuka Long‐Evans Tokushima Fatty (OLETF) strain. The critical interval was narrowed down to 570 kb between D1Got258 to p162CA1 by segregation analyses using congenic lines.


Scientific Reports | 2013

Discovery of an uncovered region in fibrin clots and its clinical significance

Yohei Hisada; Masahiro Yasunaga; Shingo Hanaoka; Shinji Saijou; Takashi Sugino; Atsushi B. Tsuji; Tsuneo Saga; Kouhei Tsumoto; Shino Manabe; Jun Ichiro Kuroda; Jun Ichi Kuratsu; Yasuhiro Matsumura

Despite the pathological importance of fibrin clot formation, little is known about the structure of these clots because X-ray and nuclear magnetic resonance (NMR) analyses are not applicable to insoluble proteins. In contrast to previously reported anti-fibrin monoclonal antibodies (mAbs), our anti-fibrin clot mAb (clone 102–10) recognises an uncovered region that is exposed only when a fibrin clot forms. The epitope of the 102–10 mAb was mapped to a hydrophobic region on the Bβ chain that interacted closely with a counterpart region on the γ chain in a soluble state. New anti-Bβ and anti-γ mAbs specific to peptides lining the discovered region appeared to bind exclusively to fibrin clots. Furthermore, the radiolabelled 102–10 mAb selectively accumulated in mouse spontaneous tumours, and immunohistochemistry using this mAb revealed greater fibrin deposition in World Health Organization (WHO) grade 4 glioma than in lower-grade gliomas. Because erosive tumours are apt to cause micro-haemorrhages, even early asymptomatic tumours detected with a radiolabelled 102-10 mAb may be aggressively malignant.


Nuclear Medicine and Biology | 2010

C-kit-targeted imaging of gastrointestinal stromal tumor using radiolabeled anti-c-kit monoclonal antibody in a mouse tumor model.

Chizuru Sogawa; Atsushi B. Tsuji; Hitomi Sudo; Aya Sugyo; Chisato Yoshida; Kenichi Odaka; Tomoya Uehara; Yasushi Arano; Mitsuru Koizumi; Tsuneo Saga

INTRODUCTION Gastrointestinal stromal tumor (GIST) is the most common mesenchymal tumor arising from the gastrointestinal tract and highly expresses mutated c-kit. We aimed to develop a specific and sensitive method for detecting GISTs using radiolabeled anti-c-kit monoclonal antibody. METHODS A mutated c-kit-expressing cell clone was established by transfecting an expressing vector of mutated c-kit gene into HEK293 human embryonic kidney cells. The tumors were developed by inoculating c-kit-expressing cells into nude mice. (125)I- and (111)In-labeled anti-c-kit antibodies (12A8 and 41A11) were evaluated in vitro by cell binding, competitive inhibition and cellular internalization assays, and in vivo by biodistribution and imaging studies in tumor-bearing mice. RESULTS Both (125)I- and (111)In-labeled antibodies showed specific binding with c-kit-expressing cells with high affinity (dissociation constants = 2.2-7.1x10(9) M(-1)). Internalization assay showed that (125)I-labeled antibodies were rapidly internalized and dehalogenated, with the release of (125)I from the cells, resulting in reduction of cell-associated radioactivity with time. In contrast, (111)In-labeled antibody was internalized but did not result in the reduced radioactivity associated with tumor cells. Reflecting this phenomenon, the in vivo tumor uptake of (125)I-labeled antibody was low on Day 1, further decreasing with time, while tumor uptake of (111)In-labeled antibody was high on Day 1, further increasing with time. The xenografted tumor was clearly visualized by scintigraphy after injection of (111)In-labeled antibody. CONCLUSION The anti-c-kit monoclonal antibody labeled with a metal radionuclide would be promising for c-kit-targeted imaging of GISTs.


PLOS ONE | 2013

Evaluation of 89Zr-Labeled Human Anti-CD147 Monoclonal Antibody as a Positron Emission Tomography Probe in a Mouse Model of Pancreatic Cancer

Aya Sugyo; Atsushi B. Tsuji; Hitomi Sudo; Kotaro Nagatsu; Mitsuru Koizumi; Yoshinori Ukai; Gene Kurosawa; Ming Rong Zhang; Yoshikazu Kurosawa; Tsuneo Saga

Introduction Pancreatic cancer is an aggressive cancer and its prognosis remains poor. Therefore, additional effective therapy is required to augment and/or complement current therapy. CD147, high expression in pancreatic cancer, is involved in the metastatic process and is considered a good candidate for targeted therapy. CD147-specfic imaging could be useful for selection of appropriate patients. Therefore, we evaluated the potential of a fully human anti-CD147 monoclonal antibody 059-053 as a new positron emission tomography (PET) probe for pancreatic cancer. Methods CD147 expression was evaluated in four pancreatic cancer cell lines (MIA Paca-2, PANC-1, BxPC-3, and AsPC-1) and a mouse cell line A4 as a negative control. Cell binding, competitive inhibition and internalization assays were conducted with 125I-, 67Ga-, or 89Zr-labeled 059-053. In vivo biodistribution of 125I- or 89Zr-labeled 059-053 was conducted in mice bearing MIA Paca-2 and A4 tumors. PET imaging with [89Zr]059-053 was conducted in subcutaneous and orthotopic tumor mouse models. Results Among four pancreatic cancer cell lines, MIA Paca-2 cells showed the highest expression of CD147, while A4 cells had no expression. Immunohistochemical staining showed that MIA Paca-2 xenografts also highly expressed CD147 in vivo. Radiolabeled 059-053 specifically bound to MIA Paca-2 cells with high affinity, but not to A4. [89Zr]059-053 uptake in MIA Paca-2 tumors increased with time from 11.0±1.3% injected dose per gram (ID/g) at day 1 to 16.9±3.2% ID/g at day 6, while [125I]059-053 uptake was relatively low and decreased with time, suggesting that 059-053 was internalized into tumor cells in vivo and 125I was released from the cells. PET with [89Zr]059-053 clearly visualized subcutaneous and orthotopic tumors. Conclusion [89Zr]059-053 is a promising PET probe for imaging CD147 expression in pancreatic cancer and has the potential to select appropriate patients with CD147-expressing tumors who could gain benefit from anti-CD147 therapy.


Microbial Pathogenesis | 2011

Fatal hemorrhage induced by subtilase cytotoxin from Shiga-toxigenic Escherichia coli.

Takeshi Furukawa; Kinnosuke Yahiro; Atsushi B. Tsuji; Yasuhiro Terasaki; Naoko Morinaga; Masaru Miyazaki; Yuh Fukuda; Tsuneo Saga; Joel Moss; Masatoshi Noda

Subtilase cytotoxin (SubAB) is an AB(5) type toxin produced by a subset of Shiga-toxigenic Escherichia coli. The A subunit is a subtilase-like serine protease and cleaves an endoplasmic reticulum chaperone BiP. The B subunit binds to a receptor on the cell surface. Although SubAB is lethal for mice, the cause of death is not clear. In this study, we demonstrate in mice that SubAB induced small bowel hemorrhage and a coagulopathy characterized by thrombocytopenia, prolonged prothrombin time and activated partial thromboplastin time. SubAB also induced inflammatory changes in the small intestine as detected by ¹⁸F-fluoro-2-deoxy-d-glucose positron emission tomography imaging and histochemical analysis. Using RT-PCR and ELISA, SubAB was shown to increase interleukin-6 in a time-dependent manner. Thus, our results indicate that death in SubAB-treated mice may be associated with severe inflammatory response and hemorrhage of the small intestine, accompanied by coagulopathy and IL6 production.


Cancer Science | 2012

ZDHHC8 knockdown enhances radiosensitivity and suppresses tumor growth in a mesothelioma mouse model.

Hitomi Sudo; Atsushi B. Tsuji; Aya Sugyo; Yuriko Ogawa; Masashi Sagara; Tsuneo Saga

Mesothelioma is an aggressive tumor caused by asbestos exposure, the incidence of which is predicted to increase globally. The prognosis of patients with mesothelioma undergoing conventional therapy is poor. Radiation therapy for mesothelioma is of limited use because of the intrinsic radioresistance of tumor cells compared with surrounding normal tissue. Thus, a novel molecular‐targeted radiosensitizing agent that enhances the radiosensitivity of mesothelioma cells is required to improve the therapeutic efficacy of radiation therapy. ZDHHC8 knockdown reduces cell survival and induces an impaired G2/M checkpoint after X‐irradiation in HEK293 cells. In the present study, we further analyzed the effect of the combination of ZDHHC8 knockdown and X‐irradiation and assessed its therapeutic efficacy in mesothelioma models. SiRNA‐induced ZDHHC8 knockdown in 211H and H2052 mesothelioma cells significantly reduced cell survival after X‐irradiation. In 211H cells treated with ZDHHC8 siRNA and X‐irradiation, the G2/M checkpoint was impaired and there was an increase in the number of cells with micronuclei, as well as apoptotic cells, in vitro. In 211H tumor‐bearing mice, ZDHHC8 siRNA and X‐irradiation significantly suppressed tumor growth, whereas ZDHHC8 siRNA alone did not. Immunohistochemical analysis showed decreased cell proliferation and induction of apoptosis in tumors treated with ZDHHC8 siRNA and X‐irradiation, but not with ZDHHC8 siRNA alone. These results suggest that ZDHHC8 knockdown with X‐irradiation induces chromosomal instability and apoptosis through the impaired G2/M checkpoint. In conclusion, the combination of ZDHHC8 siRNA and X‐irradiation has the potential to improve the therapeutic efficacy of radiation therapy for malignant mesothelioma. (Cancer Sci 2012; 103: 203–209)

Collaboration


Dive into the Atsushi B. Tsuji's collaboration.

Top Co-Authors

Avatar

Tsuneo Saga

National Institute of Radiological Sciences

View shared research outputs
Top Co-Authors

Avatar

Aya Sugyo

National Institute of Radiological Sciences

View shared research outputs
Top Co-Authors

Avatar

Hitomi Sudo

National Institute of Radiological Sciences

View shared research outputs
Top Co-Authors

Avatar

Takako Furukawa

Kansai Medical University

View shared research outputs
Top Co-Authors

Avatar

Ming Rong Zhang

National Institute of Radiological Sciences

View shared research outputs
Top Co-Authors

Avatar

Mitsuru Koizumi

Japanese Foundation for Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Chizuru Sogawa

National Institute of Radiological Sciences

View shared research outputs
Top Co-Authors

Avatar

Tatsuya Higashi

National Institute of Radiological Sciences

View shared research outputs
Top Co-Authors

Avatar

Yasuhisa Fujibayashi

National Institute of Radiological Sciences

View shared research outputs
Top Co-Authors

Avatar

Hidekatsu Wakizaka

National Institute of Radiological Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge