Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Takako Furukawa is active.

Publication


Featured researches published by Takako Furukawa.


The EMBO Journal | 1999

Osa associates with the Brahma chromatin remodeling complex and promotes the activation of some target genes.

Russell T. Collins; Takako Furukawa; Naoko Tanese; Jessica E. Treisman

The yeast SWI/SNF complex and its Drosophila and mammalian homologs are thought to control gene expression by altering chromatin structure, but the mechanism and specificity of this process are not fully understood. The Drosophila osa gene, like yeast SWI1, encodes an AT‐rich interaction (ARID) domain protein. We present genetic and biochemical evidence that Osa is a component of the Brahma complex, the Drosophila homolog of SWI/SNF. The ARID domain of Osa binds DNA without sequence specificity in vitro, but it is sufficient to direct transcriptional regulatory domains to specific target genes in vivo. Endogenous Osa appears to promote the activation of some of these genes. We show evidence that some Brahma‐containing complexes do not contain Osa and that Osa is not required to localize Brahma to chromatin. These data suggest that Osa modulates the function of the Brahma complex.


Journal of Biological Chemistry | 2002

Largest subunits of the human SWI/SNF chromatin-remodeling complex promote transcriptional activation by steroid hormone receptors.

Hiroko Inoue; Takako Furukawa; Stavros Giannakopoulos; Sharleen Zhou; David S. King; Naoko Tanese

The mammalian SWI/SNF-related complexes facilitate gene transcription by remodeling chromatin using the energy of ATP hydrolysis. The recruitment of these complexes to promoters remains poorly understood and may involve histone modifications or direct interactions with site-specific transcription factors or other cofactors. Here we report the isolation of two related but distinct cDNA clones, hOsa1 and hOsa2, that encode the largest subunits of human SWI/SNF. hOsa1 is identical to previously reported BAF250, and hOsa2 shares a high degree of sequence similarity with hOsa1. Mass spectrometric analysis, and immunoblotting with antibodies specific to hOsa1 or hOsa2 demonstrate the presence of both proteins in SWI/SNF-A but not in the related polybromo-BRG1-associated factors complex purified from HeLa cells. Co-precipitation studies indicate that hOsa1 and hOsa2 associate with BRG1 and hBRM through the C-terminal domain of hOsa. We define multiple domains within hBRM and BRG1 that interact with the hOsa C terminus. In cultured mammalian cells, hOsa1 and hOsa2 stimulate transcription by the glucocorticoid, estrogen, and androgen receptors. The glucocorticoid receptor-mediated activation is not observed with the C-terminal domain or with the hOsa2 polypeptide lacking the ARID DNA binding domain. These results suggest that hOsa1 and hOsa2 participate in promoting transcriptional activation by the steroid hormone receptors.


Biomaterials | 2011

The use of nanoimprinted scaffolds as 3D culture models to facilitate spontaneous tumor cell migration and well-regulated spheroid formation.

Yukie Yoshii; Atsuo Waki; Kaori Yoshida; Anna Kakezuka; Maki Kobayashi; Hideo Namiki; Yusei Kuroda; Yasushi Kiyono; Hiroshi Yoshii; Takako Furukawa; Tatsuya Asai; Hidehiko Okazawa; Juri G. Gelovani; Yasuhisa Fujibayashi

Two-dimensional (2D) cell cultures are essential for drug development and tumor research. However, the limitations of 2D cultures are widely recognized, and a better technique is needed. Recent studies have indicated that a strong physical contact between cells and 2D substrates induces cellular characteristics that differ from those of tumors growing in vivo. 3D cell cultures using various substrates are then developing; nevertheless, conventional approaches have failed in maintenance of cellular proliferation and viability, uniformity, reproducibility, and/or simplicity of these assays. Here, we developed a 3D culture system with inorganic nanoscale scaffolding using nanoimprinting technology (nano-culture plates), which reproduced the characteristics of tumor cells growing in vivo. Diminished cell-to-substrate physical contact facilitated spontaneous tumor cell migration, intercellular adhesion, and multi-cellular 3D-spheroid formation while maintaining cellular proliferation and viability. The resulting multi-cellular spheroids formed hypoxic core regions similar to tumors growing in vivo. This technology allows creating uniform and highly-reproducible 3D cultures, which is easily applicable for microscopic and spectrophotometric assays, which can be used for high-throughput/high-content screening of anticancer drugs and should accelerate discovery of more effective anticancer therapies.


Cancer Science | 2009

Cytosolic acetyl-CoA synthetase affected tumor cell survival under hypoxia: the possible function in tumor acetyl-CoA/acetate metabolism

Yukie Yoshii; Takako Furukawa; Hiroshi Yoshii; Tetsuya Mori; Yasushi Kiyono; Atsuo Waki; Masato Kobayashi; Tetsuya Tsujikawa; Takashi Kudo; Hidehiko Okazawa; Yoshiharu Yonekura; Yasuhisa Fujibayashi

Understanding tumor‐specific metabolism under hypoxia is important to find novel targets for antitumor drug design. Here we found that tumor cells expressed higher levels of cytosolic acetyl‐CoA synthetase (ACSS2) under hypoxia than normoxia. Knockdown of ACSS2 by RNA interference (RNAi) in tumor cells enhanced tumor cell death under long‐term hypoxia in vitro. Our data also demonstrated that the ACSS2 suppression slowed tumor growth in vivo. These findings showed that ACSS2 plays a significant role in tumor cell survival under hypoxia and that ACSS2 would be a potential target for tumor treatment. Furthermore, we found that tumor cells excreted acetate and the quantity increased under hypoxia: the pattern of acetate excretion followed the expression pattern of ACSS2. Additionally, the ACSS2 knockdown led to a corresponding reduction in the acetate excretion in tumor cells. These results mean that ACSS2 can conduct the reverse reaction from acetyl‐CoA to acetate in tumor cells, which indicates that ACSS2 is a bi‐directional enzyme in tumor cells and that ACSS2 might play a buffering role in tumor acetyl‐CoA/acetate metabolism. (Cancer Sci 2009; 100: 821–827)


Nuclear Medicine and Biology | 2003

Intra-tumoral distribution of 64Cu-ATSM: A comparison study with FDG

Atsushi Obata; Mitsuyoshi Yoshimoto; Shingo Kasamatsu; Hironobu Naiki; Shinji Takamatsu; Kenichi Kashikura; Takako Furukawa; Jason S. Lewis; Michael J. Welch; Hideo Saji; Yoshiharu Yonekura; Yasuhisa Fujibayashi

(64)Cu-labeled diacetyl-bis(N(4)-methylthiosemicarbazone) ((64)Cu-ATSM) is a promising agent for internal radiation therapy and imaging of hypoxic tissues. In the present study, the intra-tumoral distribution of (64)Cu-ATSM was investigated by comparing it to that of [(18)F]FDG and histological findings. VX2 tumors were implanted into Japanese white rabbits subcutaneously. (64)Cu-ATSM and [(18)F]FDG were co-injected intravenously and the tumor was dissected and cut into 1 mm thick slices 1 h after the injection. The uptake of (64)Cu-ATSM and [(18)F]FDG was measured using a dual-tracer autoradiographic technique. Histological cell biology was estimated from the optical microscopy of tumor sections. The major accumulation of (64)Cu-ATSM was observed around the outer rim of the tumor masses which consisted mainly of active cells and expected to be hypoxic. [(18)F]FDG was distributed more widely with highest levels in the inner regions where pre-necrotic cells were mainly observed. (64)Cu-ATSM appears to be useful for the detection of hypoxic but active tumor cell regions in vivo.


PLOS ONE | 2013

Fatty Acid Synthase Is a Key Target in Multiple Essential Tumor Functions of Prostate Cancer: Uptake of Radiolabeled Acetate as a Predictor of the Targeted Therapy Outcome

Yukie Yoshii; Takako Furukawa; Nobuyuki Oyama; Yoko Hasegawa; Yasushi Kiyono; Ryuichi Nishii; Atsuo Waki; Atsushi B. Tsuji; Chizuru Sogawa; Hidekatsu Wakizaka; Toshimitsu Fukumura; Hiroshi Yoshii; Yasuhisa Fujibayashi; Jason S. Lewis; Tsuneo Saga

Fatty acid synthase (FASN) expression is elevated in several cancers, and this over-expression is associated with poor prognosis. Inhibitors of FASN, such as orlistat, reportedly show antitumor effects against cancers that over-express FASN, making FASN a promising therapeutic target. However, large variations in FASN expression levels in individual tumors have been observed, and methods to predict FASN-targeted therapy outcome before treatment are required to avoid unnecessary treatment. In addition, how FASN inhibition affects tumor progression remains unclear. Here, we showed the method to predict FASN-targeted therapy outcome using radiolabeled acetate uptake and presented mechanisms of FASN inhibition with human prostate cancer cell lines, to provide the treatment strategy of FASN-targeted therapy. We revealed that tumor uptake of radiolabeled acetate reflected the FASN expression levels and sensitivity to FASN-targeted therapy with orlistat in vitro and in vivo. FASN-targeted therapy was noticeably effective against tumors with high FASN expression, which was indicated by high acetate uptake. To examine mechanisms, we established FASN knockdown prostate cancer cells by transduction of short-hairpin RNA against FASN and investigated the characteristics by analyses on morphology and cell behavior and microarray-based gene expression profiling. FASN inhibition not only suppressed cell proliferation but prevented pseudopodia formation and suppressed cell adhesion, migration, and invasion. FASN inhibition also suppressed genes involved in production of intracellular second messenger arachidonic acid and androgen hormones, both of which promote tumor progression. Collectively, our data demonstrated that uptake of radiolabeled acetate is a useful predictor of FASN-targeted therapy outcome. This suggests that [1-11C]acetate positron emission tomography (PET) could be a powerful tool to accomplish personalized FASN-targeted therapy by non-invasive visualization of tumor acetate uptake and selection of responsive tumors. FASN-targeted therapy could be an effective treatment to suppress multiple steps related to tumor progression in prostate cancers selected by [1-11C]acetate PET.


Oncogene | 2001

Involvement of PLAGL2 in activation of iron deficient- and hypoxia-induced gene expression in mouse cell lines.

Takako Furukawa; Yasushi Adachi; Jun-ichi Fujisawa; Taiho Kambe; Yuko Yamaguchi-Iwai; Ryuzo Sasaki; Jun Kuwahara; Susumu Ikehara; Rikio Tokunaga; Shigeru Taketani

We searched iron-deficient inducible cDNA, using subtraction cloning and mRNA from desferrioxamine-treated mouse macrophage Raw264.7 cells. We identified a pleomorphic adenoma gene like 2 (PLAGL2), one of PLAG superfamily proteins exhibiting antiproliferative properties on tumor cells. Mouse PLAGL2 consists of 496 amino acids with seven C2H2 zinc-fingers. PLAGL2 mRNA was induced in RAW264.7 cells, mouse erythroleukemia cells and Balb/c 3T3 cells when they were treated with desferrioxamine. Hypoxia also increased PLAGL2 mRNA. Expression of PLAGL2 in COS-7 cells led to nuclear localization. PLAGL2 had potential binding ability to GC-rich oligonucleotide and activated transcription of a gene with the binding sequence in transient reporter assay, a finding consistent with a case seen in a PLAGL2 homolog, ZAC-1. Transient co-transfection of PLAGL2 or ZAC1 cDNA and a reporter containing a lactate dehydrogenase A (LDHA) promoter carrying the hypoxia inducible factor-1 responsive element led to an increase in the basal transcription in Balb/c 3T3 and HepG2 cells. Activation in transcription from the LDHA promoter increased by desferrioxamine treatment or hypoxia was further enhanced when PLAGL2 was expressed. We propose that PLAGL2 is involved in the cell cycle arrest and apoptosis of tumor cells by regulating iron depletion- or hypoxia-inducible gene expression.


Nuclear Medicine and Biology | 2009

Tumor uptake of radiolabeled acetate reflects the expression of cytosolic acetyl-CoA synthetase: implications for the mechanism of acetate PET

Yukie Yoshii; Atsuo Waki; Takako Furukawa; Yasushi Kiyono; Tetsuya Mori; Hiroshi Yoshii; Takashi Kudo; Hidehiko Okazawa; Michael J. Welch; Yasuhisa Fujibayashi

INTRODUCTION [1-(11)C]Acetate positron emission tomography (PET) is used for myocardial studies. In the myocardium, mitochondrial acetyl-CoA synthetase (ACSS1) mainly contributes to the radiopharmaceutical uptake. [1-(11)C]Acetate PET is also used for tumor diagnosis; however, the uptake mechanism of radiolabeled acetate in tumors remains unclear. Our previous study reported that cytosolic acetyl-CoA synthetase (ACSS2) was expressed in tumor cells and up-regulated under hypoxia, whereas expression of ACSS1 was negligible regardless of the oxygen conditions. We also indicated that ACSS2 is a bidirectional enzyme that controls acetyl-CoA/acetate metabolism in tumor cells. In this study, to elucidate the basic mechanism of tumor acetate uptake, we focused on ACSS2 and investigated the role of ACSS2 in the uptake of radiolabeled acetate in tumor cells. METHODS [1-(14)C]Acetate uptake and ACSS2 expression were examined in four tumor cell lines under normoxia or hypoxia. An ACSS2 knockdown study was also performed. RESULTS [1-(14)C]Acetate uptake was increased in the tumor cells under hypoxia. This pattern followed that of ACSS2 expression. The incorporated (14)C was mostly distributed in the lipid-soluble fractions, and this tendency increased under hypoxia. ACSS2 knockdown led to a corresponding reduction in [1-(14)C]acetate uptake in all tumor cell lines examined under normoxia and hypoxia. CONCLUSIONS ACSS2 plays an important role in the uptake of radiolabeled acetate in tumor cells, which is different from that in the myocardium, which mainly involves ACSS1. The uptake of radiolabeled acetate in tumors increased under hypoxia along with up-regulation of ACSS2 expression. This suggests a possible mechanism for acetate PET for tumors.


Biochimica et Biophysica Acta | 1994

Molecular cloning, sequencing and expression of cDNA encoding human coproporphyrinogen oxidase.

Shigeru Taketani; Hirao Kohno; Takako Furukawa; Takeo Yoshinaga; Rikio Tokunaga

A complete cDNA clone encoding human coproporphyrinogen (coprogen) oxidase, the sixth enzyme in the heme biosynthetic pathway, has been isolated from a human placenta cDNA library. The cDNA had an open reading frame of 1062 base pairs encoding a protein of 354 amino acid residues (M(r) 40,291). Amino acid sequencing showed that the mature enzyme consists of 323 amino acid residues (M(r) 36,842) with a putative leader peptide of 31 amino acid residues. The human enzyme showed an 86% identity to the mouse enzyme. In addition, the recombinant enzyme which did not contain leader peptide was actively expressed in Escherichia coli. The isolation and expression of cDNA for human coprogen oxidase should facilitate studies of the structure of the gene as well as characterization of molecular lesions causing hereditary coproporphyria.


Gene Therapy | 2009

Visualization of in vivo electroporation-mediated transgene expression in experimental tumors by optical and magnetic resonance imaging

W Aung; Sumitaka Hasegawa; Michiko Koshikawa-Yano; Takayuki Obata; Hiroo Ikehira; Takako Furukawa; Ichio Aoki; Tsuneo Saga

In vivo electroporation (EP) is an efficient method for effective gene transfer and is highly expected for application in anticancer gene therapy. Non-invasive monitoring of gene transfer/expression is critical for optimal gene therapy. Here we report in vivo optical and high-field magnetic resonance imaging (MRI) of EP-mediated transgene expression in a tumor model. Initially, we observed spatio-temporal change in in vivo EP-mediated transgene expression by optical imaging using red fluorescence protein (RFP) as a reporter gene. Next, we constructed a dual-reporter plasmid carrying a gene-encoding MRI reporter ferritin heavy chain and RFP gene to visualize the intratumoral transgene expression by dual modality. Cells transfected with this plasmid showed lower signal intensity on in vitro T2-weighted cellular MRI and quantitatively increased the transverse relaxation rate (1/T2) compared with control cells. After conducting in vivo EP in an experimental tumor, the plasmid-injected region showed both fluorescent emissions in optical imaging and detectably lowered signal on T2-weighted MRI. The correlative immunohistological findings confirmed that both the reporter transgenes were co-expressed in this region. Thus, our strategy provides a platform for evaluating EP-mediated cancer gene therapy easily and safely without administering contrast agent or substrate.

Collaboration


Dive into the Takako Furukawa's collaboration.

Top Co-Authors

Avatar

Tsuneo Saga

National Institute of Radiological Sciences

View shared research outputs
Top Co-Authors

Avatar

Yasuhisa Fujibayashi

National Institute of Radiological Sciences

View shared research outputs
Top Co-Authors

Avatar

Yukie Yoshii

National Institute of Radiological Sciences

View shared research outputs
Top Co-Authors

Avatar

Sumitaka Hasegawa

National Institute of Radiological Sciences

View shared research outputs
Top Co-Authors

Avatar

Atsushi B. Tsuji

National Institute of Radiological Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hiroshi Yoshii

National Institute of Radiological Sciences

View shared research outputs
Top Co-Authors

Avatar

Chizuru Sogawa

National Institute of Radiological Sciences

View shared research outputs
Top Co-Authors

Avatar

Tetsuya Mori

Beijing Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Zhao Hui Jin

National Institute of Radiological Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge