Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Atsushi Hanada is active.

Publication


Featured researches published by Atsushi Hanada.


Nature | 2008

Inhibition of shoot branching by new terpenoid plant hormones

Mikihisa Umehara; Atsushi Hanada; Satoko Yoshida; Kohki Akiyama; Tomotsugu Arite; Noriko Takeda-Kamiya; Hiroshi Magome; Yuji Kamiya; Ken Shirasu; Koichi Yoneyama; Junko Kyozuka; Shinjiro Yamaguchi

Shoot branching is a major determinant of plant architecture and is highly regulated by endogenous and environmental cues. Two classes of hormones, auxin and cytokinin, have long been known to have an important involvement in controlling shoot branching. Previous studies using a series of mutants with enhanced shoot branching suggested the existence of a third class of hormone(s) that is derived from carotenoids, but its chemical identity has been unknown. Here we show that levels of strigolactones, a group of terpenoid lactones, are significantly reduced in some of the branching mutants. Furthermore, application of strigolactones inhibits shoot branching in these mutants. Strigolactones were previously found in root exudates acting as communication chemicals with parasitic weeds and symbiotic arbuscular mycorrhizal fungi. Thus, we propose that strigolactones act as a new hormone class—or their biosynthetic precursors—in regulating above-ground plant architecture, and also have a function in underground communication with other neighbouring organisms.


The Plant Cell | 2003

Gibberellin Biosynthesis and Response during Arabidopsis Seed Germination

Mikihiro Ogawa; Atsushi Hanada; Yukika Yamauchi; Ayuko Kuwahara; Yuji Kamiya; Shinjiro Yamaguchi

The hormone-mediated control of plant growth and development involves both synthesis and response. Previous studies have shown that gibberellin (GA) plays an essential role in Arabidopsis seed germination. To learn how GA stimulates seed germination, we performed comprehensive analyses of GA biosynthesis and response using gas chromatography–mass spectrometry and oligonucleotide-based DNA microarray analysis. In addition, spatial correlations between GA biosynthesis and response were assessed by in situ hybridization. We identified a number of transcripts, the abundance of which is modulated upon exposure to exogenous GA. A subset of these GA-regulated genes was expressed in accordance with an increase in endogenous active GA levels, which occurs just before radicle emergence. The GA-responsive genes identified include those responsible for synthesis, transport, and signaling of other hormones, suggesting the presence of uncharacterized crosstalk between GA and other hormones. In situ hybridization analysis demonstrated that the expression of GA-responsive genes is not restricted to the predicted site of GA biosynthesis, suggesting that GA itself, or GA signals, is transmitted across different cell types during Arabidopsis seed germination.


Proceedings of the National Academy of Sciences of the United States of America | 2011

The main auxin biosynthesis pathway in Arabidopsis

Kiyoshi Mashiguchi; Keita Tanaka; Tatsuya Sakai; Satoko Sugawara; Hiroshi Kawaide; Masahiro Natsume; Atsushi Hanada; Takashi Yaeno; Ken Shirasu; Hong Yao; Paula McSteen; Yunde Zhao; Ken-ichiro Hayashi; Yuji Kamiya; Hiroyuki Kasahara

The phytohormone auxin plays critical roles in the regulation of plant growth and development. Indole-3-acetic acid (IAA) has been recognized as the major auxin for more than 70 y. Although several pathways have been proposed, how auxin is synthesized in plants is still unclear. Previous genetic and enzymatic studies demonstrated that both TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS (TAA) and YUCCA (YUC) flavin monooxygenase-like proteins are required for biosynthesis of IAA during plant development, but these enzymes were placed in two independent pathways. In this article, we demonstrate that the TAA family produces indole-3-pyruvic acid (IPA) and the YUC family functions in the conversion of IPA to IAA in Arabidopsis (Arabidopsis thaliana) by a quantification method of IPA using liquid chromatography–electrospray ionization–tandem MS. We further show that YUC protein expressed in Escherichia coli directly converts IPA to IAA. Indole-3-acetaldehyde is probably not a precursor of IAA in the IPA pathway. Our results indicate that YUC proteins catalyze a rate-limiting step of the IPA pathway, which is the main IAA biosynthesis pathway in Arabidopsis.


The Plant Cell | 2004

Activation of Gibberellin Biosynthesis and Response Pathways by Low Temperature during Imbibition of Arabidopsis thaliana Seeds

Yukika Yamauchi; Mikihiro Ogawa; Ayuko Kuwahara; Atsushi Hanada; Yuji Kamiya; Shinjiro Yamaguchi

Exposure of imbibed seeds to low temperature (typically 4°C) is widely used to break seed dormancy and to improve the frequency of germination. However, the mechanism by which temperature accelerates germination is largely unknown. Using DNA microarray and gas chromatography–mass spectrometry analyses, we found that a subset of gibberellin (GA) biosynthesis genes were upregulated in response to low temperature, resulting in an increase in the level of bioactive GAs and transcript abundance of GA-inducible genes in imbibed Arabidopsis thaliana seeds. Using a loss-of-function mutant, the cold-inducible GA biosynthesis gene, AtGA3ox1, was shown to play an essential role in mediating the effect of low temperature. Besides temperature, AtGA3ox1 also is positively regulated by active phytochrome and negatively regulated by GA activity. We show that both red light and GA deficiency act in addition to low temperature to elevate the level of AtGA3ox1 transcript, indicating that multiple signals are integrated by the AtGA3ox1 gene to control seed germination. When induced by low temperature, AtGA3ox1 mRNA was detectable by in situ RNA hybridization in an additional set of cell types relative to that in red light–induced seeds. Our results illustrate that the GA biosynthesis and response pathways are activated during seed imbibition at low temperature and suggest that the cellular distribution of bioactive GAs may be altered under different light and temperature conditions.


The Plant Cell | 2006

ELONGATED UPPERMOST INTERNODE Encodes a Cytochrome P450 Monooxygenase That Epoxidizes Gibberellins in a Novel Deactivation Reaction in Rice

Yongyou Zhu; Takahito Nomura; Yonghan Xu; Yingying Zhang; Yu Peng; Bizeng Mao; Atsushi Hanada; Haicheng Zhou; Renxiao Wang; Peijin Li; Xudong Zhu; Lewis N. Mander; Yuji Kamiya; Shinjiro Yamaguchi; Zuhua He

The recessive tall rice (Oryza sativa) mutant elongated uppermost internode (eui) is morphologically normal until its final internode elongates drastically at the heading stage. The stage-specific developmental effect of the eui mutation has been used in the breeding of hybrid rice to improve the performance of heading in male sterile cultivars. We found that the eui mutant accumulated exceptionally large amounts of biologically active gibberellins (GAs) in the uppermost internode. Map-based cloning revealed that the Eui gene encodes a previously uncharacterized cytochrome P450 monooxygenase, CYP714D1. Using heterologous expression in yeast, we found that EUI catalyzed 16α,17-epoxidation of non-13-hydroxylated GAs. Consistent with the tall and dwarfed phenotypes of the eui mutant and Eui-overexpressing transgenic plants, respectively, 16α,17-epoxidation reduced the biological activity of GA4 in rice, demonstrating that EUI functions as a GA-deactivating enzyme. Expression of Eui appeared tightly regulated during plant development, in agreement with the stage-specific eui phenotypes. These results indicate the existence of an unrecognized pathway for GA deactivation by EUI during the growth of wild-type internodes. The identification of Eui as a GA catabolism gene provides additional evidence that the GA metabolism pathway is a useful target for increasing the agronomic value of crops.


Plant Physiology | 2008

High Temperature-Induced Abscisic Acid Biosynthesis and Its Role in the Inhibition of Gibberellin Action in Arabidopsis Seeds

Shigeo Toh; Akane Imamura; Asuka Watanabe; Kazumi Nakabayashi; Masanori Okamoto; Yusuke Jikumaru; Atsushi Hanada; Yukie Aso; Kanako Ishiyama; Noriko Tamura; Satoshi Iuchi; Masatomo Kobayashi; Shinjiro Yamaguchi; Yuji Kamiya; Eiji Nambara; Naoto Kawakami

Suppression of seed germination at supraoptimal high temperature (thermoinhibiton) during summer is crucial for Arabidopsis (Arabidopsis thaliana) to establish vegetative and reproductive growth in appropriate seasons. Abscisic acid (ABA) and gibberellins (GAs) are well known to be involved in germination control, but it remains unknown how these hormone actions (metabolism and responsiveness) are altered at high temperature. Here, we show that ABA levels in imbibed seeds are elevated at high temperature and that this increase is correlated with up-regulation of the zeaxanthin epoxidase gene ABA1/ZEP and three 9-cis-epoxycarotenoid dioxygenase genes, NCED2, NCED5, and NCED9. Reverse-genetic studies show that NCED9 plays a major and NCED5 and NCED2 play relatively minor roles in high temperature-induced ABA synthesis and germination inhibition. We also show that bioactive GAs stay at low levels at high temperature, presumably through suppression of GA 20-oxidase genes, GA20ox1, GA20ox2, and GA20ox3, and GA 3-oxidase genes, GA3ox1 and GA3ox2. Thermoinhibition-tolerant germination of loss-of-function mutants of GA negative regulators, SPINDLY (SPY) and RGL2, suggests that repression of GA signaling is required for thermoinibition. Interestingly, ABA-deficient aba2-2 mutant seeds show significant expression of GA synthesis genes and repression of SPY expression even at high temperature. In addition, the thermoinhibition-resistant germination phenotype of aba2-1 seeds is suppressed by a GA biosynthesis inhibitor, paclobutrazol. We conclude that high temperature stimulates ABA synthesis and represses GA synthesis and signaling through the action of ABA in Arabidopsis seeds.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Identification of an abscisic acid transporter by functional screening using the receptor complex as a sensor.

Yuri Kanno; Atsushi Hanada; Yasutaka Chiba; Takanari Ichikawa; Miki Nakazawa; Minami Matsui; Tomokazu Koshiba; Yuji Kamiya; Mitsunori Seo

Movement of the plant hormone abscisic acid (ABA) within plants has been documented; however, the molecular mechanisms that regulate ABA transport are not fully understood. By using a modified yeast two-hybrid system, we screened Arabidopsis cDNAs capable of inducing interactions between the ABA receptor PYR/PYL/RCAR and PP2C protein phosphatase under low ABA concentrations. By using this approach, we identified four members of the NRT1/PTR family as candidates for ABA importers. Transport assays in yeast and insect cells demonstrated that at least one of the candidates ABA-IMPORTING TRANSPORTER (AIT) 1, which had been characterized as the low-affinity nitrate transporter NRT1.2, mediates cellular ABA uptake. Compared with WT, the ait1/nrt1.2 mutants were less sensitive to exogenously applied ABA during seed germination and/or postgermination growth, whereas overexpression of AIT1/NRT1.2 resulted in ABA hypersensitivity in the same conditions. Interestingly, the inflorescence stems of ait1/nrt1.2 had a lower surface temperature than those of the WT because of excess water loss from open stomata. We detected promoter activities of AIT1/NRT1.2 around vascular tissues in inflorescence stems, leaves, and roots. These data suggest that the function of AIT1/NRT1.2 as an ABA importer at the site of ABA biosynthesis is important for the regulation of stomatal aperture in inflorescence stems.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Biochemical analyses of indole-3-acetaldoxime-dependent auxin biosynthesis in Arabidopsis.

Satoko Sugawara; Shojiro Hishiyama; Yusuke Jikumaru; Atsushi Hanada; Takeshi Nishimura; Tomokazu Koshiba; Yunde Zhao; Yuji Kamiya; Hiroyuki Kasahara

Auxins are hormones that regulate many aspects of plant growth and development. The main plant auxin is indole-3-acetic acid (IAA), whose biosynthetic pathway is not fully understood. Indole-3-acetaldoxime (IAOx) has been proposed to be a key intermediate in the synthesis of IAA and several other indolic compounds. Genetic studies of IAA biosynthesis in Arabidopsis have suggested that 2 distinct pathways involving the CYP79B or YUCCA (YUC) genes may contribute to IAOx synthesis and that several pathways are also involved in the conversion of IAOx to IAA. Here we report the biochemical dissection of IAOx biosynthesis and metabolism in plants by analyzing IAA biosynthesis intermediates. We demonstrated that the majority of IAOx is produced by CYP79B genes in Arabidopsis because IAOx production was abolished in CYP79B-deficient mutants. IAOx was not detected from rice, maize, and tobacco, which do not have apparent CYP79B orthologues. IAOx levels were not significantly altered in the yuc1 yuc2 yuc4 yuc6 quadruple mutants, suggesting that the YUC gene family probably does not contribute to IAOx synthesis. We determined the pathway for conversion of IAOx to IAA by identifying 2 likely intermediates, indole-3-acetamide (IAM) and indole-3-acetonitrile (IAN), in Arabidopsis. When 13C6-labeled IAOx was fed to CYP79B-deficient mutants, 13C6 atoms were efficiently incorporated to IAM, IAN, and IAA. This biochemical evidence indicates that IAOx-dependent IAA biosynthesis, which involves IAM and IAN as intermediates, is not a common but a species-specific pathway in plants; thus IAA biosynthesis may differ among plant species.


Plant and Cell Physiology | 2010

Contribution of Strigolactones to the Inhibition of Tiller Bud Outgrowth under Phosphate Deficiency in Rice

Mikihisa Umehara; Atsushi Hanada; Hiroshi Magome; Noriko Takeda-Kamiya; Shinjiro Yamaguchi

Strigolactones (SLs) or SL-derived metabolite(s) have recently been shown to act as endogenous inhibitors of axillary bud outgrowth. SLs released from roots induce hyphal branching of arbuscular mycorrhizal (AM) fungi that facilitate the uptake of inorganic nutrients, such as phosphate (Pi) and nitrate, by the host plants. Previous studies have shown that SL levels in root exudates are highly elevated by Pi starvation, which might contribute to successful symbiosis with AM fungi in the rhizosphere. However, how endogenous SL levels elevated by Pi starvation contribute to its hormonal action has been unknown. Here, we show that tiller bud outgrowth in wild-type rice seedlings is inhibited, while root 2′-epi-5-deoxystrigol (epi-5DS) levels are elevated, in response to decreasing Pi concentrations in the media. However, the suppression of tiller bud outgrowth under Pi deficiency does not occur in the SL-deficient and -insensitive mutants. We also show that the responsiveness to exogenous SL is slightly increased by Pi deficiency. When Pi-starved seedlings are transferred to Pi-sufficient media, tiller bud outgrowth is induced following a decrease in root epi-5DS levels. Taken together, these results suggest that elevated SL levels by Pi starvation contribute to the inhibition of tiller bud outgrowth in rice seedlings. We speculate that SL plays a dual role in the adaptation to Pi deficiency; one as a rhizosphere signal to maximize AM fungi symbiosis for improved Pi acquisition and the other as an endogenous hormone or its biosynthetic precursor to optimize shoot branching for efficient Pi utilization.


Plant Journal | 2008

The DDF1 transcriptional activator upregulates expression of a gibberellin‐deactivating gene, GA2ox7, under high‐salinity stress in Arabidopsis

Hiroshi Magome; Shinjiro Yamaguchi; Atsushi Hanada; Yuji Kamiya; Kenji Oda

High-salinity stress affects plant growth and development. We have previously reported that overexpression of the salinity-responsive DWARF AND DELAYED FLOWERING 1 (DDF1) gene, encoding an AP2 transcription factor of the DREB1/CBF subfamily, causes dwarfism mainly by levels of reducing bioactive gibberellin (GA) in transgenic Arabidopsis. Here, we found that the GA 2-oxidase 7 gene (GA2ox7), which encodes a C20-GA deactivation enzyme, is strongly upregulated in DDF1-overexpressing transgenic plants. A loss-of-function mutation of GA2ox7 (ga2ox7-2) suppressed the dwarf phenotype of DDF1-overexpressing plants, indicating that their GA deficiency is due to overexpression of GA2ox7. Transient overexpression of DDF1 activated the promoter of GA2ox7 in Arabidopsis leaves. A gel shift assay showed that DDF1 binds DRE-like motifs (GCCGAC and ATCGAC) in the GA2ox7 promoter. In Arabidopsis under high-salinity stress, six GA2ox genes, including GA2ox7, were upregulated. Furthermore, the ga2ox7-2 mutant was less growth retarded than wild-type Col under high-salinity stress. These results demonstrate that, under salinity stress, Arabidopsis plants actively reduce endogenous GA levels via the induction of GA 2-oxidase, with the result that growth is repressed for stress adaptation.

Collaboration


Dive into the Atsushi Hanada's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yuji Kamiya

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kohki Akiyama

Osaka Prefecture University

View shared research outputs
Top Co-Authors

Avatar

Shinsaku Ito

Tokyo University of Agriculture

View shared research outputs
Researchain Logo
Decentralizing Knowledge