Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mikihisa Umehara is active.

Publication


Featured researches published by Mikihisa Umehara.


Nature | 2008

Inhibition of shoot branching by new terpenoid plant hormones

Mikihisa Umehara; Atsushi Hanada; Satoko Yoshida; Kohki Akiyama; Tomotsugu Arite; Noriko Takeda-Kamiya; Hiroshi Magome; Yuji Kamiya; Ken Shirasu; Koichi Yoneyama; Junko Kyozuka; Shinjiro Yamaguchi

Shoot branching is a major determinant of plant architecture and is highly regulated by endogenous and environmental cues. Two classes of hormones, auxin and cytokinin, have long been known to have an important involvement in controlling shoot branching. Previous studies using a series of mutants with enhanced shoot branching suggested the existence of a third class of hormone(s) that is derived from carotenoids, but its chemical identity has been unknown. Here we show that levels of strigolactones, a group of terpenoid lactones, are significantly reduced in some of the branching mutants. Furthermore, application of strigolactones inhibits shoot branching in these mutants. Strigolactones were previously found in root exudates acting as communication chemicals with parasitic weeds and symbiotic arbuscular mycorrhizal fungi. Thus, we propose that strigolactones act as a new hormone class—or their biosynthetic precursors—in regulating above-ground plant architecture, and also have a function in underground communication with other neighbouring organisms.


Plant and Cell Physiology | 2010

Contribution of Strigolactones to the Inhibition of Tiller Bud Outgrowth under Phosphate Deficiency in Rice

Mikihisa Umehara; Atsushi Hanada; Hiroshi Magome; Noriko Takeda-Kamiya; Shinjiro Yamaguchi

Strigolactones (SLs) or SL-derived metabolite(s) have recently been shown to act as endogenous inhibitors of axillary bud outgrowth. SLs released from roots induce hyphal branching of arbuscular mycorrhizal (AM) fungi that facilitate the uptake of inorganic nutrients, such as phosphate (Pi) and nitrate, by the host plants. Previous studies have shown that SL levels in root exudates are highly elevated by Pi starvation, which might contribute to successful symbiosis with AM fungi in the rhizosphere. However, how endogenous SL levels elevated by Pi starvation contribute to its hormonal action has been unknown. Here, we show that tiller bud outgrowth in wild-type rice seedlings is inhibited, while root 2′-epi-5-deoxystrigol (epi-5DS) levels are elevated, in response to decreasing Pi concentrations in the media. However, the suppression of tiller bud outgrowth under Pi deficiency does not occur in the SL-deficient and -insensitive mutants. We also show that the responsiveness to exogenous SL is slightly increased by Pi deficiency. When Pi-starved seedlings are transferred to Pi-sufficient media, tiller bud outgrowth is induced following a decrease in root epi-5DS levels. Taken together, these results suggest that elevated SL levels by Pi starvation contribute to the inhibition of tiller bud outgrowth in rice seedlings. We speculate that SL plays a dual role in the adaptation to Pi deficiency; one as a rhizosphere signal to maximize AM fungi symbiosis for improved Pi acquisition and the other as an endogenous hormone or its biosynthetic precursor to optimize shoot branching for efficient Pi utilization.


Plant and Cell Physiology | 2010

FINE CULM1 (FC1) Works Downstream of Strigolactones to Inhibit the Outgrowth of Axillary Buds in Rice

Kosuke Minakuchi; Hiromu Kameoka; Naoko Yasuno; Mikihisa Umehara; Le Luo; Kaoru Kobayashi; Atsushi Hanada; Kotomi Ueno; Tadao Asami; Shinjiro Yamaguchi; Junko Kyozuka

Recent studies of highly branched mutants of pea, Arabidopsis and rice have demonstrated that strigolactones (SLs) act as hormones that inhibit shoot branching. The identification of genes that work downstream of SLs is required for a better understanding of how SLs control the growth of axillary buds. We found that the increased tillering phenotype of fine culm1 (fc1) mutants of rice is not rescued by the application of 1 μM GR24, a synthetic SL analog. Treatment with a high concentration of GR24 (10 μM) causes suppression of tiller growth in wild-type plants, but is not effective on fc1 mutants, implying that proper FC1 functioning is required for SLs to inhibit bud growth. Overexpression of FC1 partially rescued d3-2 defects in the tiller growth and plant height. An in situ hybridization analysis showed that FC1 mRNA accumulates in axillary buds, the shoot apical meristem, young leaves, vascular tissues and the tips of crown roots. FC1 mRNA expression was not significantly affected by GR24, suggesting that transcriptional induction may not be the mechanism by which SLs affect FC1 functioning. On the other hand, the expression level of FC1 is negatively regulated by cytokinin treatment. We propose that FC1 acts as an integrator of multiple signaling pathways and is essential to the fine-tuning of shoot branching in rice.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Carlactone is an endogenous biosynthetic precursor for strigolactones

Yoshiya Seto; Aika Sado; Kei Asami; Atsushi Hanada; Mikihisa Umehara; Kohki Akiyama; Shinjiro Yamaguchi

Significance Strigolactones (SLs) were initially characterized as root-derived signals for parasitic and symbiotic interactions with root parasitic plants and arbuscular mycorrhizal fungi, respectively. SLs were later shown to act as endogenous hormones that regulate shoot branching. Carlactone (CL) was identified as a product of three SL biosynthetic enzymes in vitro, and therefore a putative biosynthetic precursor for SLs. However, it was neither detected from plant tissues, nor was the conversion of CL to SL demonstrated in vivo. In this paper, we show that 13C-labeled CL is converted to SLs in vivo, and that endogenous CL is successfully identified from rice and Arabidopsis. These results demonstrate that CL is a true biosynthetic precursor for SLs. Strigolactones (SLs) are a class of terpenoid plant hormones that regulate shoot branching as well as being known as root-derived signals for symbiosis and parasitism. SL has tricyclic-lactone (ABC-ring) and methyl butenolide (D-ring), and they are connected through an enol ether bridge. Recently, a putative biosynthetic intermediate called carlactone (CL), of which carbon skeleton is in part similar to those of SLs, was identified by biochemical analysis of three biosynthetic enzymes, DWARF27, CAROTENOID CLEAVAGE DIOXYGENASE 7 (CCD7), and CCD8 in vitro. However, CL has never been identified from plant tissues, and the conversion of CL to SLs has not been proven in vivo. To address these questions, we chemically synthesized 13C-labeled CL. We show that 13C-labeled CL is converted to (−)-[13C]-2′-epi-5-deoxystrigol ((−)-2′-epi-5DS) and [13C]-orobanchol, endogenous SLs in rice, in the dwarf10 mutant, which is defective in CCD8. In addition, we successfully identified endogenous CL by using liquid chromatography-quadrupole/time-of-flight tandem mass spectrometry in rice and Arabidopsis. Furthermore, we determined the absolute stereochemistry of endogenous CL to be (11R)-configuration, which is the same as that of (−)-2′-epi-5DS at the corresponding position. Feeding experiments showed that only the (11R)-isomer of CL, but not the (11S)-isomer, was converted to (−)-2′-epi-5DS in vivo. Taken together, our data provide conclusive evidence that CL is an endogenous SL precursor that is stereospecifically recognized in the biosynthesis pathway.


New Phytologist | 2012

The D3 F‐box protein is a key component in host strigolactone responses essential for arbuscular mycorrhizal symbiosis

Satoko Yoshida; Hiromu Kameoka; Misaki Tempo; Kohki Akiyama; Mikihisa Umehara; Shinjiro Yamaguchi; Hideo Hayashi; Junko Kyozuka; Ken Shirasu

Arbuscular mycorrhiza (AM) represents an ancient endosymbiosis between plant roots and Glomeromycota fungi. Strigolactones (SLs), plant-derived terpenoid lactones, activate hyphal branching of AM fungi before physical contact. Lack of SL biosynthesis results in lower colonization of AM fungi. The F-box protein, DWARF3 (D3), and the hydrolase family protein DWARF14 (D14) are crucial for SL responses in rice. Here we conducted AM fungal colonization assays with the SL-insensitive d3 and d14 mutants. The d3 mutant exhibited strong defects in AM fungal colonization, whereas the d14 mutant showed higher AM fungal colonization. As D14 has a homologous protein, D14-LIKE, we generated D14-LIKE knockdown lines by RNA interference in the wildtype and d14 background. D14 and D14-LIKE double knockdown lines exhibited similar colonization rates as those of the d14-1 mutant. D3 is crucial for establishing AM symbiosis in rice, whereas D14 and D14-LIKE are not. Our results suggest distinct roles for these SL-related components in AM symbiosis.


Planta | 2014

Strigolactone signaling regulates rice leaf senescence in response to a phosphate deficiency

Yusuke Yamada; Soya Furusawa; Seiji Nagasaka; Koichiro Shimomura; Shinjiro Yamaguchi; Mikihisa Umehara

Strigolactones (SLs) act as plant hormones that inhibit shoot branching and stimulate secondary growth of the stem, primary root growth, and root hair elongation. In the moss Physcomitrella patens, SLs regulate branching of chloronemata and colony extension. In addition, SL-deficient and SL-insensitive mutants show delayed leaf senescence. To explore the effects of SLs on leaf senescence in rice (Oryza sativa L.), we treated leaf segments of rice dwarf mutants with a synthetic SL analogue, GR24, and evaluated their chlorophyll contents, ion leakage, and expression levels of senescence-associated genes. Exogenously applied GR24 restored normal leaf senescence in SL-deficient mutants, but not in SL-insensitive mutants. Most plants highly produce endogenous SLs in response to phosphate deficiency. Thus, we evaluated effects of GR24 under phosphate deficiency. Chlorophyll levels did not differ of in the wild-type between the sufficient and deficient phosphate conditions, but increased in the SL-deficient mutants under phosphate deficiency, leading in the strong promotion of leaf senescence by GR24 treatment. These results indicate that the mutants exhibited increased responsiveness to GR24 under phosphate deficiency. In addition, GR24 accelerated leaf senescence in the intact SL-deficient mutants under phosphate deficiency as well as dark-induced leaf senescence. The effects of GR24 were stronger in d10 compared to d17. Based on these results, we suggest that SLs regulate leaf senescence in response to phosphate deficiency.


Annals of Botany | 2010

Historical and contemporary gene dispersal in wild carrot (Daucus carota ssp. carota) populations

Jun Rong; Stef Janson; Mikihisa Umehara; Michiyuki Ono; Klaas Vrieling

BACKGROUND AND AIMS Wild carrot is the ancestor of cultivated carrot and is the most important gene pool for carrot breeding. Transgenic carrot may be released into the environment in the future. The aim of the present study was to determine how far a gene can disperse in wild carrot populations, facilitating risk assessment and management of transgene introgression from cultivated to wild carrots and helping to design sampling strategies for germplasm collections. METHODS Wild carrots were sampled from Meijendel and Alkmaar in The Netherlands and genotyped with 12 microsatellite markers. Spatial autocorrelation analyses were used to detect spatial genetic structures (SGSs). Historical gene dispersal estimates were based on an isolation by distance model. Mating system and contemporary pollen dispersal were estimated using 437 offspring of 20 mothers with different spatial distances and a correlated paternity analysis in the Meijendel population. KEY RESULTS Significant SGSs are found in both populations and they are not significantly different from each other. Combined SGS analysis indicated significant positive genetic correlations up to 27 m. Historical gene dispersal sigma(g) and neighbourhood size N(b) were estimated to be 4-12 m [95 % confidence interval (CI): 3-25] and 42-73 plants (95 % CI: 28-322) in Meijendel and 10-31 m (95 % CI: 7-infinity) and 57-198 plants (95 % CI: 28-infinity) in Alkmaar with longer gene dispersal in lower density populations. Contemporary pollen dispersal follows a fat-tailed exponential-power distribution, implying pollen of wild carrots could be dispersed by insects over long distance. The estimated outcrossing rate was 96 %. CONCLUSIONS SGSs in wild carrots may be the result of high outcrossing, restricted seed dispersal and long-distance pollen dispersal. High outcrossing and long-distance pollen dispersal suggest high frequency of transgene flow might occur from cultivated to wild carrots and that they could easily spread within and between populations.


Plant and Cell Physiology | 2010

A new lead chemical for strigolactone biosynthesis inhibitors.

Shinsaku Ito; Nobutaka Kitahata; Mikihisa Umehara; Atsushi Hanada; Atsutaka Kato; Kotomi Ueno; Kiyoshi Mashiguchi; Junko Kyozuka; Koichi Yoneyama; Shinjiro Yamaguchi; Tadao Asami

Several triazole-containing chemicals have previously been shown to act as efficient inhibitors of cytochrome P450 monooxygenases. To discover a strigolactone biosynthesis inhibitor, we screened a chemical library of triazole derivatives to find chemicals that induce tiller bud outgrowth of rice seedlings. We discovered a triazole-type chemical, TIS13 [2,2-dimethyl-7-phenoxy-4-(1H-1,2,4-triazol-1-yl)heptan-3-ol], which induced outgrowth of second tiller buds of wild-type seedlings, as observed for non-treated strigolactone-deficient d10 mutant seedlings. TIS13 treatment reduced strigolactone levels in both roots and root exudates in a concentration-dependent manner. Co-application of GR24, a synthetic strigolactone, with TIS13 canceled the TIS13-induced tiller bud outgrowth. Taken together, these results indicate that TIS13 inhibits strigolactone biosynthesis in rice seedlings. We propose that TIS13 is a new lead compound for the development of specific strigolactone biosynthesis inhibitors.


Plant Physiology | 2017

Regulation of Strigolactone Biosynthesis by Gibberellin Signaling

Shinsaku Ito; Daichi Yamagami; Mikihisa Umehara; Atsushi Hanada; Satoko Yoshida; Yasuyuki Sasaki; Shunsuke Yajima; Junko Kyozuka; Miyako Ueguchi-Tanaka; Makoto Matsuoka; Ken Shirasu; Shinjiro Yamaguchi; Tadao Asami

GA regulates SL biosynthesis through the GA receptor GID1 and F-box protein GID2. Strigolactones (SLs) are a class of plant hormones that regulate diverse physiological processes, including shoot branching and root development. They also act as rhizosphere signaling molecules to stimulate the germination of root parasitic weeds and the branching of arbuscular mycorrhizal fungi. Although various types of cross talk between SLs and other hormones have been reported in physiological analyses, the cross talk between gibberellin (GA) and SLs is poorly understood. We screened for chemicals that regulate the level of SLs in rice (Oryza sativa) and identified GA as, to our knowledge, a novel SL-regulating molecule. The regulation of SL biosynthesis by GA is dependent on the GA receptor GID1 and F-box protein GID2. GA treatment also reduced the infection of rice plants by the parasitic plant witchers weed (Striga hermonthica). These data not only demonstrate, to our knowledge, the novel plant hormone cross talk between SL and GA, but also suggest that GA can be used to control parasitic weed infections.


PLOS ONE | 2011

Effects of triazole derivatives on strigolactone levels and growth retardation in rice.

Shinsaku Ito; Mikihisa Umehara; Atsushi Hanada; Nobutaka Kitahata; Hiroki Hayase; Shinjiro Yamaguchi; Tadao Asami

We previously discovered a lead compound for strigolactone (SL) biosynthesis inhibitors, TIS13 (2,2-dimethyl-7-phenoxy-4-(1H-1,2,4-triazol-1-yl)heptan-3-ol). Here, we carried out a structure-activity relationship study of TIS13 to discover more potent and specific SL biosynthesis inhibitor because TIS13 has a severe side effect at high concentrations, including retardation of the growth of rice seedlings. TIS108, a new TIS13 derivative, was found to be a more specific SL biosynthesis inhibitor than TIS13. Treatment of rice seedlings with TIS108 reduced SL levels in both roots and root exudates in a concentration-dependent manner and did not reduce plant height. In addition, root exudates of TIS108-treated rice seedlings stimulated Striga germination less than those of control plants. These results suggest that TIS108 has a potential to be applied in the control of root parasitic weeds germination.

Collaboration


Dive into the Mikihisa Umehara's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kohki Akiyama

Osaka Prefecture University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hamako Sasamoto

Yokohama National University

View shared research outputs
Top Co-Authors

Avatar

Shinjiro Ogita

Toyama Prefectural University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shinsaku Ito

Tokyo University of Agriculture

View shared research outputs
Researchain Logo
Decentralizing Knowledge