Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Atsushi Okato is active.

Publication


Featured researches published by Atsushi Okato.


International Journal of Oncology | 2016

Regulation of the collagen cross-linking enzymes LOXL2 and PLOD2 by tumor-suppressive microRNA-26a/b in renal cell carcinoma

Akira Kurozumi; Mayuko Kato; Yusuke Goto; Ryosuke Matsushita; Rika Nishikawa; Atsushi Okato; Ichiro Fukumoto; Tomohiko Ichikawa; Naohiko Seki

Our recent studies of microRNA (miRNA) expression signatures in human cancers revealed that microRNA-26a (miRNA-26a) and microRNA-26b (miRNA-26b) were significantly reduced in cancer tissues. To date, few reports have provided functional analyses of miR-26a or miR-26b in renal cell carcinoma (RCC). The aim of the present study was to investigate the functional significance of miR-26a and miR-26b in RCC and to identify novel miR-26a/b-mediated cancer pathways and target genes involved in RCC oncogenesis and metastasis. Downregulation of miR-26a or miR-26b was confirmed in RCC clinical specimens. Restoration of miR-26a or miR-26b in RCC cell lines (786-O and A498) revealed that these miRNAs significantly inhibited cancer cell migration and invasion. Our in silico analysis and luciferase reporter assays showed that lysyl oxidase-like 2 (LOXL2) and procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2 (PLOD2) were directly regulated by these miRNAs. Moreover, downregulating the PLOD2 gene significantly inhibited cell migration and invasion in RCC cells. Thus, our data showed that two genes promoting metastasis, LOXL2 and PLOD2, were epigenetically regulated by tumor-suppressive microRNAs, miR-26a and miR-26b, providing important insights into the molecular mechanisms of RCC metastasis.


Oncotarget | 2017

Deep sequencing-based microRNA expression signatures in head and neck squamous cell carcinoma: dual strands of pre- miR -150 as antitumor miRNAs

Keiichi Koshizuka; Nijiro Nohata; Toyoyuki Hanazawa; Naoko Kikkawa; Takayuki Arai; Atsushi Okato; Ichiro Fukumoto; Koji Katada; Yoshitaka Okamoto; Naohiko Seki

We adopted into RNA-sequencing technologies to construct the microRNA (miRNA) expression signature of head and neck squamous cell carcinoma (HNSCC). Our signature revealed that a total of 160 miRNAs (44 upregulated and 116 downregulated) were aberrantly expressed in cancer tissues. Expression of miR-150-5p (guide strand miRNA) and miR-150-3p (passenger strand miRNA) were significantly silenced in cancer tissues, suggesting both miRNAs act as antitumor miRNAs in HNSCC cells. Ectopic expression of mature miRNAs, miR-150-5p and miR-150-3p inhibited cancer cell aggressiveness. Low expression of miR-150-5p and miR-150-3p predicted significantly shorter overall survival in patients with HNSCC (P = 0.0091 and P = 0.0386) by Kaplan–Meier survival curves analyses. We identified that integrin α3 (ITGA3), integrin α6 (ITGA6), and tenascin C (TNC) were coordinately regulated by these miRNAs in HNSCC cells. Knockdown assays using siRNAs showed that ITGA3, ITGA6 and TNC acted as cancer promoting genes in HNSCC cells. Moreover, ITGA3, ITGA6, and TNC alterations were associated with significantly poorer overall survival (P = 0.0177, P = 0.0237, and P = 0.026, respectively). Dual strands of pre-150 (miR-150-5p and miR-150-3p) functioned as antitumor miRNAs based on the miRNA expression signature of HNSCC. Identification of antitumor miR-150-mediated RNA networks may provide novel insights into pathogenesis of HNSCC.


Journal of Human Genetics | 2017

Aberrantly expressed microRNAs in bladder cancer and renal cell carcinoma.

Akira Kurozumi; Yusuke Goto; Atsushi Okato; Tomohiko Ichikawa; Naohiko Seki

Bladder cancer (BC) and renal cell carcinoma (RCC) are frequently diagnosed urinary tract cancers. Recently developed molecular-targeted therapies for RCC have shown remarkable therapeutic efficacy; however, no targeted therapeutics are currently approved for the treatment of BC, and few effective treatment options exist. Current studies have shown that small noncoding RNA molecules have major roles in cancer cells. MicroRNAs (miRNAs) are endogenous small noncoding RNA molecules that regulate protein-/nonprotein-coding RNAs in human cells. A large body of evidence suggests that aberrantly expressed miRNAs are deeply involved in the pathogenesis of human cancers. In this paper, we review recently published miRNA expression signatures of BC and RCC. We focus on downregulated or upregulated miRNAs in multiple signatures and discuss putative target genes of miRNAs. Comparisons of RCC and BC expression signatures revealed that the two types of cancer showed opposite expression patterns for miR-200 family miRNAs (i.e., miR-141/200c and miR-200a/200b/429). We discuss in silico analysis of genes targeted by miR-200 family miRNAs and the molecular mechanisms underlying BC and RCC.


British Journal of Cancer | 2017

Impact of novel miR-145-3p regulatory networks on survival in patients with castration-resistant prostate cancer

Yusuke Goto; Akira Kurozumi; Takayuki Arai; Nijiro Nohata; Satoko Kojima; Atsushi Okato; Mayuko Kato; Kazuto Yamazaki; Yasuo Ishida; Yukio Naya; Tomohiko Ichikawa; Naohiko Seki

Background:Despite recent advancements, metastatic castration-resistant prostate cancer (CRPC) is not considered curative. Novel approaches for identification of therapeutic targets of CRPC are needed.Methods:Next-generation sequencing revealed 945–1248 miRNAs from each lethal mCRPC sample. We constructed miRNA expression signatures of CRPC by comparing the expression of miRNAs between CRPC and normal prostate tissue or hormone-sensitive prostate cancer (HSPC). Genome-wide gene expression studies and in silico analyses were carried out to predict miRNA regulation and investigate the functional significance and clinical utility of the novel oncogenic pathways regulated by these miRNAs in prostate cancer (PCa).Results:Based on the novel miRNA expression signature of CRPC, miR-145-5p and miR-145-3p were downregulated in CRPC. By focusing on miR-145-3p, which is a passenger strand and has not been well studied in previous reports, we showed that miR-145-3p targeted 4 key molecules, i.e., MELK, NCAPG, BUB1, and CDK1, in CPRC. These 4 genes significantly predicted survival in patients with PCa.Conclusions:Small RNA sequencing for lethal CRPC and in silico analyses provided novel therapeutic targets for CRPC.


International Journal of Oncology | 2016

Direct regulation of LAMP1 by tumor-suppressive microRNA-320a in prostate cancer

Atsushi Okato; Yusuke Goto; Akira Kurozumi; Mayuko Kato; Satoko Kojima; Ryosuke Matsushita; Masaya Yonemori; Kazutaka Miyamoto; Tomohiko Ichikawa; Naohiko Seki

Advanced prostate cancer (PCa) metastasizes to bone and lymph nodes, and currently available treatments cannot prevent the progression and metastasis of the disease. Therefore, an improved understanding of the molecular mechanisms of the progression and metastasis of advanced PCa using current genomic approaches is needed. Our miRNA expression signature in castration-resistant prostate cancer (CRPC) revealed that microRNA-320a (miR-320a) was significantly reduced in cancer tissues, suggesting that miR-320a may be a promising anticancer miRNA. The aim of this study was to investigate the functional roles of miR-320a in naïve PCa and CRPC cells and to identify miR-320a-regulated genes involved in PCa metastasis. The expression levels of miR-320a were significantly reduced in naïve PCa, CRPC specimens, and PCa cell lines. Restoration of mature miR-320a in PCa cell lines showed that miR-320a significantly inhibited cancer cell migration and invasion. Moreover, we found that lysosomal-associated membrane protein 1 (LAMP1) was a direct target of miR-320a in PCa cells. Silencing of LAMP1 using siRNA significantly inhibited cell proliferation, migration, and invasion in PCa cells. Overexpression of LAMP1 was observed in PCa and CRPC clinical specimens. Moreover, downstream pathways were identified using si-LAMP1-transfected cells. The discovery of tumor-suppressive miR-320a-mediated pathways may provide important insights into the potential mechanisms of PCa metastasis.


Cancer Science | 2017

Regulation of ITGA3 by the anti‐tumor miR‐199 family inhibits cancer cell migration and invasion in head and neck cancer

Keiichi Koshizuka; Toyoyuki Hanazawa; Naoko Kikkawa; Takayuki Arai; Atsushi Okato; Akira Kurozumi; Mayuko Kato; Koji Katada; Yoshitaka Okamoto; Naohiko Seki

For patients with head and neck squamous cell carcinoma (HNSCC), survival rates have not improved due to local recurrence and distant metastasis. Current targeted molecular therapies do not substantially benefit HNSCC patients. Therefore, it is necessary to use advanced genomic approaches to elucidate the molecular mechanisms underlying the aggressiveness of HNSCC cells. Analysis of our microRNA (miRNA) expression signature by RNA sequencing showed that the miR‐199 family (miR‐199a‐5p, miR‐199a‐3p, miR‐199b‐5p and miR‐199b‐3p) was significantly reduced in cancer tissues. Ectopic expression of mature miRNA demonstrated that all members of the miR‐199 family inhibited cancer cell migration and invasion by HNSCC cell lines (SAS and HSC3). These findings suggested that both passenger strands and guide strands of miRNA are involved in cancer pathogenesis. In silico database and genome‐wide gene expression analyses revealed that the gene coding for integrin α3 (ITGA3) was regulated by all members of the miR‐199 family in HNSCC cells. Knockdown of ITGA3 significantly inhibited cancer cell migration and invasion by HNSCC cells. Moreover, overexpression of ITGA3 was confirmed in HNSCC specimens, and high expression of ITGA3 predicted poorer survival of the patients (P = 0.0048). Our data revealed that both strands of pre‐miR‐199a (miR‐199a‐5p and miR‐199a‐3p) and pre‐miR‐199b (miR‐199b‐5p and miR‐199b‐3p) acted as anti‐tumor miRNA in HNSCC cells. Importantly, the involvement of passenger strand miRNA in the regulation of cellular processes is a novel concept in RNA research. Novel miRNA‐based approaches for HNSCC can be used to identify potential targets for the development of new therapeutic strategies.


British Journal of Cancer | 2016

Regulation of E3 ubiquitin ligase-1 ( WWP1 ) by microRNA-452 inhibits cancer cell migration and invasion in prostate cancer

Yusuke Goto; Satoko Kojima; Akira Kurozumi; Mayuko Kato; Atsushi Okato; Ryosuke Matsushita; Tomohiko Ichikawa; Naohiko Seki

Background:MicroRNA-224 (miR-224) and microRNA-452 (miR-452) are closely located on the human chromosome Xq28 region. miR-224 functions as a tumour suppressor by targeting tumour protein D52 (TPD52) in prostate cancer (PCa). Here, we aimed to investigate the functional significance of miR-452 in PCa cells.Methods:Functional studies of PCa cells were performed using transfection with mature miRNAs or siRNAs. Genome-wide gene expression analysis, in silico analysis, and dual-luciferase reporter assays were applied to identify miRNA targets. The association between miR-452 levels and overall patient survival was estimated by the Kaplan–Meier method.Results:Expression of miR-452 was significantly downregulated in PCa tissues. Transfection with mature miR-452 inhibited the migration and invasion of PCa cells. Kaplan–Meier survival curves showed that low expression of miR-452 predicted a short duration of progression to castration-resistant PCa. WW domain-containing E3 ubiquitin protein ligase-1 (WWP1) was a direct target of miR-452, and knockdown of WWP1 inhibited the migration and invasion of PCa cells. WWP1 was upregulated in PCa clinical specimens.Conclusions:Regulation of the miR-452–WWP1 axis contributed to PCa cell migration and invasion, and elucidation of downstream signalling of this axis will provide new insights into the mechanisms of PCa oncogenesis and metastasis.


Journal of Human Genetics | 2017

Regulation of metastasis-promoting LOXL2 gene expression by antitumor microRNAs in prostate cancer

Mayuko Kato; Akira Kurozumi; Yusuke Goto; Ryosuke Matsushita; Atsushi Okato; Rika Nishikawa; Ichiro Fukumoto; Keiichi Koshizuka; Tomohiko Ichikawa; Naohiko Seki

Our recent studies of microRNA (miRNA) expression signatures of prostate cancer (PCa) showed that six miRNAs (specifically, miR-26a, miR-26b, miR-29a, miR-29b, miR-29c and miR-218) were markedly reduced in cancer tissues. Moreover, ectopic expression of these miRNAs suppressed PCa cell aggressiveness, indicating that these miRNAs acted in concert to regulate genes that promoted metastasis. Genome-wide gene expression analysis and in silico database analysis identified a total of 35 candidate genes that promoted metastasis and were targeted by these 6 miRNAs. Using luciferase reporter assays, we showed that the lysyl oxidase-like 2 (LOXL2) gene was directly controlled by these tumor-suppressive miRNAs in PCa cells. Overexpression of LOXL2 was confirmed in PCa tissues and knockdown of the LOXL2 gene markedly inhibited the migration and invasion of PCa cells. Aberrant expression of LOXL2 enhanced migration and invasion of PCa cells. Downregulation of antitumor miRNAs might disrupt the tightly controlled RNA networks found in normal cells. New insights into the novel molecular mechanisms of PCa pathogenesis was revealed by antitumor miRNA-regulated RNA networks.


Cancer Science | 2017

Regulation of spindle and kinetochore-associated protein 1 by antitumor miR-10a-5p in renal cell carcinoma

Takayuki Arai; Atsushi Okato; Satoko Kojima; Tetsuya Idichi; Keiichi Koshizuka; Akira Kurozumi; Mayuko Kato; Kazuto Yamazaki; Yasuo Ishida; Yukio Naya; Tomohiko Ichikawa; Naohiko Seki

Analysis of our original microRNA (miRNA) expression signature of patients with advanced renal cell carcinoma (RCC) showed that microRNA‐10a‐5p (miR‐10a‐5p) was significantly downregulated in RCC specimens. The aims of the present study were to investigate the antitumor roles of miR‐10a‐5p and the novel cancer networks regulated by this miRNA in RCC cells. Downregulation of miR‐10a‐5p was confirmed in RCC tissues and RCC tissues from patients treated with tyrosine kinase inhibitors (TKI). Ectopic expression of miR‐10a‐5p in RCC cell lines (786‐O and A498 cells) inhibited cancer cell migration and invasion. Spindle and kinetochore‐associated protein 1 (SKA1) was identified as an antitumor miR‐10a‐5p target by genome‐based approaches, and direct regulation was validated by luciferase reporter assays. Knockdown of SKA1 inhibited cancer cell migration and invasion in RCC cells. Overexpression of SKA1 was observed in RCC tissues and TKI‐treated RCC tissues. Moreover, analysis of The Cancer Genome Atlas database demonstrated that low expression of miR‐10a‐5p and high expression of SKA1 were significantly associated with overall survival in patients with RCC. These findings showed that downregulation of miR‐10a‐5p and overexpression of the SKA1 axis were highly involved in RCC pathogenesis and resistance to TKI treatment in RCC.


International Journal of Oncology | 2017

Passenger strand of miR-145-3p acts as a tumor-suppressor by targeting MYO1B in head and neck squamous cell carcinoma

Yasutaka Yamada; Keiichi Koshizuka; Toyoyuki Hanazawa; Naoko Kikkawa; Atsushi Okato; Tetsuya Idichi; Takayuki Arai; Sho Sugawara; Koji Katada; Yoshitaka Okamoto; Naohiko Seki

Analysis of the microRNA (miRNA) expression signature of head and neck squamous cell carcinoma (HNSCC) based on RNA sequencing showed that dual strands of pre-miR-145 (miR-145-5p, guide strand; and miR-145-3p, passenger strand) were significantly reduced in cancer tissues. In miRNA biogenesis, passenger strands of miRNAs are degraded and have no biological activities in cells. The aims of this study were to investigate the functional significance of the passenger strand of miR-145 and to identify miR-145-3p-regulated oncogenic genes in HNSCC cells. Expression levels of miR-145-5p and miR-145-3p were significantly downregulated in HNSCC tissues and cell lines (SAS and HSC3 cells). Ectopic expression of miR-145-3p inhibited cancer cell proliferation, migration and invasion, similar to miR-145-5p, in HNSCC cells. Myosin 1B (MYO1B) was directly regulated by miR-145-3p, and knockdown of MYO1B by siRNA inhibited cancer cell aggressiveness. Overexpression of MYO1B was confirmed in HNSCC clinical specimens by analysis of protein and mRNA levels. Interestingly, high expression of MYO1B was associated with poor prognosis in patients with HNSCC by analysis of The Cancer Genome Atlas database (p=0.00452). Our data demonstrated that the passenger strand of miR-145 acted as an antitumor miRNA through targeting MYO1B in HNSCC cells. The involvement of dual strands of pre-miR-145 (miR-145-5p and miR-145-3p) in the regulation of HNSCC pathogenesis is a novel concept in present RNA research.

Collaboration


Dive into the Atsushi Okato's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge