Mayuko Kato
Chiba University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mayuko Kato.
Cancer Science | 2016
Akira Kurozumi; Yusuke Goto; Ryosuke Matsushita; Ichiro Fukumoto; Mayuko Kato; Rika Nishikawa; Shinichi Sakamoto; Hideki Enokida; Masayuki Nakagawa; Tomohiko Ichikawa; Naohiko Seki
Analysis of microRNA (miRNA) expression signatures in prostate cancer (PCa) and castration‐resistant PCa has revealed that miRNA‐223 is significantly downregulated in cancer tissues, suggesting that miR‐223 acts as a tumor‐suppressive miRNA by targeting oncogenes. The aim of this study was to investigate the functional roles of miR‐223 and identify downstream oncogenic targets regulated by miR‐223 in PCa cells. Functional studies of miR‐223 were carried out to investigate cell proliferation, migration, and invasion using PC3 and PC3M PCa cell lines. Restoration of miR‐223 significantly inhibited cancer cell migration and invasion in PCa cells. In silico database and genome‐wide gene expression analyses revealed that ITGA3 and ITGB1 were direct targets of miR‐223 regulation. Knockdown of ITGA3 and ITGB1 significantly inhibited cancer cell migration and invasion in PCa cells by regulating downstream signaling. Moreover, overexpression of ITGA3 and ITGB1 was observed in PCa clinical specimens. Thus, our data indicated that downregulation of miR‐223 enhanced ITGA3/ITGB1 signaling and contributed to cancer cell migration and invasion in PCa cells. Elucidation of the molecular pathways modulated by tumor‐suppressive miRNAs provides insights into the mechanisms of PCa progression and metastasis.
British Journal of Cancer | 2015
Yusuke Goto; Satoko Kojima; Rika Nishikawa; Akira Kurozumi; Mayuko Kato; Hideki Enokida; Ryosuke Matsushita; Kazuto Yamazaki; Yasuo Ishida; Masayuki Nakagawa; Yukio Naya; Tomohiko Ichikawa; Naohiko Seki
Background:Our present study of the microRNA (miRNA) expression signature in castration-resistant prostate cancer (CRPC) revealed that the clustered miRNAs microRNA-221 (miR-221) and microRNA-222 (miR-222) are significantly downregulated in cancer tissues. The aim of this study was to investigate the functional roles of miR-221 and miR-222 in prostate cancer (PCa) cells.Methods:A CRPC miRNA signature was constructed by PCR-based array methods. Functional studies of differentially expressed miRNAs were analysed using PCa cells. The association between miRNA expression and overall survival was estimated by the Kaplan–Meier method. In silico database and genome-wide gene expression analyses were performed to identify molecular targets regulated by the miR-221/222 cluster.Results:miR-221 and miR-222 were significantly downregulated in PCa and CRPC specimens. Kaplan–Meier survival curves showed that low expression of miR-222 predicted a short duration of progression to CRPC. Restoration of miR-221 or miR-222 in cancer cells revealed that both miRNAs significantly inhibited cancer cell migration and invasion. Ecm29 was directly regulated by the miR-221/222 cluster in PCa cells.Conclusions:Loss of the tumour-suppressive miR-221/222 cluster enhanced migration and invasion in PCa cells. Our data describing targets regulated by the tumour-suppressive miR-221/222 cluster provide insights into the mechanisms of PCa and CRPC progression.
International Journal of Oncology | 2016
Akira Kurozumi; Mayuko Kato; Yusuke Goto; Ryosuke Matsushita; Rika Nishikawa; Atsushi Okato; Ichiro Fukumoto; Tomohiko Ichikawa; Naohiko Seki
Our recent studies of microRNA (miRNA) expression signatures in human cancers revealed that microRNA-26a (miRNA-26a) and microRNA-26b (miRNA-26b) were significantly reduced in cancer tissues. To date, few reports have provided functional analyses of miR-26a or miR-26b in renal cell carcinoma (RCC). The aim of the present study was to investigate the functional significance of miR-26a and miR-26b in RCC and to identify novel miR-26a/b-mediated cancer pathways and target genes involved in RCC oncogenesis and metastasis. Downregulation of miR-26a or miR-26b was confirmed in RCC clinical specimens. Restoration of miR-26a or miR-26b in RCC cell lines (786-O and A498) revealed that these miRNAs significantly inhibited cancer cell migration and invasion. Our in silico analysis and luciferase reporter assays showed that lysyl oxidase-like 2 (LOXL2) and procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2 (PLOD2) were directly regulated by these miRNAs. Moreover, downregulating the PLOD2 gene significantly inhibited cell migration and invasion in RCC cells. Thus, our data showed that two genes promoting metastasis, LOXL2 and PLOD2, were epigenetically regulated by tumor-suppressive microRNAs, miR-26a and miR-26b, providing important insights into the molecular mechanisms of RCC metastasis.
International Journal of Oncology | 2016
Keiko Mizuno; Naohiko Seki; Hiroko Mataki; Ryosuke Matsushita; Kazuto Kamikawaji; Tomohiro Kumamoto; Koichi Takagi; Yusuke Goto; Rika Nishikawa; Mayuko Kato; Hideki Enokida; Masayuki Nakagawa; Hiromasa Inoue
Lung cancer remains the most frequent cause of cancer-related death in developed countries. A recent molecular-targeted strategy has contributed to improvement of the remarkable effect of adenocarcinoma of the lung. However, such treatment has not been developed for squamous cell carcinoma (SCC) of the disease. Our recent studies of microRNA (miRNA) expression signatures of human cancers showed that the microRNA-29 family (miR-29a, miR-29b and miR-29c) significantly reduced cancer tissues compared to normal tissues. These findings suggest that miR-29s act as tumor-suppressors by targeting several oncogenic genes. The aim of the study was to investigate the functional significance of miR-29s in lung SCC and to identify miR-29s modulating molecular targets in lung SCC cells. Restoration of all mature members of the miR-29s inhibited cancer cell migration and invasion. Gene expression data combined in silico analysis and luciferase reporter assays demonstrated that the lysyl oxidase-like 2 (LOXL2) gene was a direct regulator of tumor-suppressive miR-29s. Moreover, overexpressed LOXL2 was confirmed in lung SCC clinical specimens, and silencing of LOXL2 inhibited cancer cell migration and invasion in lung SCC cell lines. Our present data suggested that loss of tumor-suppressive miR-29s enhanced cancer cell invasion in lung SCC through direct regulation of oncogenic LOXL2. Elucidation of the novel lung SCC molecular pathways and targets regulated by tumor-suppressive miR-29s will provide new insights into the potential mechanisms of oncogenesis and metastasis of the disease.
Journal of Human Genetics | 2016
Ichiro Fukumoto; Naoko Kikkawa; Ryosuke Matsushita; Mayuko Kato; Akira Kurozumi; Rika Nishikawa; Yusuke Goto; Keiichi Koshizuka; Toyoyuki Hanazawa; Hideki Enokida; Masayuki Nakagawa; Yoshitaka Okamoto; Naohiko Seki
In spite of considerable advances in multimodality therapy, including surgery, radiotherapy and chemotherapy, the overall survival rate for patients with head and neck squamous cell carcinoma (HNSCC) is very poor (only 15–45%). Understanding the molecular mechanisms of metastatic pathways underlying HNSCC using currently available genomic approaches might improve therapies for and prevention of the disease. Our previous studies showed that three tumor-suppressive microRNAs (miRNAs), miR-26a/b, miR-29a/b/c and miR-218, significantly inhibited cancer cell migration and invasion. Therefore, we hypothesized that these miRNAs-regulated target genes deeply contributed to cancer metastasis. These tumor-suppressive miRNAs directly regulate LOXL2 expression in HNSCC cells by using in silico analysis and luciferase reporter assays. Overexpressed LOXL2 was confirmed in HNSCC clinical specimens, and silencing of LOXL2 inhibited cancer cell migration and invasion in HNSCC cell lines. Our present data showed that tumor-suppressive miRNAs regulation of LOXL2 will provide new insights into the novel molecular mechanisms of HNSCC metastasis.
British Journal of Cancer | 2017
Yusuke Goto; Akira Kurozumi; Takayuki Arai; Nijiro Nohata; Satoko Kojima; Atsushi Okato; Mayuko Kato; Kazuto Yamazaki; Yasuo Ishida; Yukio Naya; Tomohiko Ichikawa; Naohiko Seki
Background:Despite recent advancements, metastatic castration-resistant prostate cancer (CRPC) is not considered curative. Novel approaches for identification of therapeutic targets of CRPC are needed.Methods:Next-generation sequencing revealed 945–1248 miRNAs from each lethal mCRPC sample. We constructed miRNA expression signatures of CRPC by comparing the expression of miRNAs between CRPC and normal prostate tissue or hormone-sensitive prostate cancer (HSPC). Genome-wide gene expression studies and in silico analyses were carried out to predict miRNA regulation and investigate the functional significance and clinical utility of the novel oncogenic pathways regulated by these miRNAs in prostate cancer (PCa).Results:Based on the novel miRNA expression signature of CRPC, miR-145-5p and miR-145-3p were downregulated in CRPC. By focusing on miR-145-3p, which is a passenger strand and has not been well studied in previous reports, we showed that miR-145-3p targeted 4 key molecules, i.e., MELK, NCAPG, BUB1, and CDK1, in CPRC. These 4 genes significantly predicted survival in patients with PCa.Conclusions:Small RNA sequencing for lethal CRPC and in silico analyses provided novel therapeutic targets for CRPC.
International Journal of Oncology | 2016
Atsushi Okato; Yusuke Goto; Akira Kurozumi; Mayuko Kato; Satoko Kojima; Ryosuke Matsushita; Masaya Yonemori; Kazutaka Miyamoto; Tomohiko Ichikawa; Naohiko Seki
Advanced prostate cancer (PCa) metastasizes to bone and lymph nodes, and currently available treatments cannot prevent the progression and metastasis of the disease. Therefore, an improved understanding of the molecular mechanisms of the progression and metastasis of advanced PCa using current genomic approaches is needed. Our miRNA expression signature in castration-resistant prostate cancer (CRPC) revealed that microRNA-320a (miR-320a) was significantly reduced in cancer tissues, suggesting that miR-320a may be a promising anticancer miRNA. The aim of this study was to investigate the functional roles of miR-320a in naïve PCa and CRPC cells and to identify miR-320a-regulated genes involved in PCa metastasis. The expression levels of miR-320a were significantly reduced in naïve PCa, CRPC specimens, and PCa cell lines. Restoration of mature miR-320a in PCa cell lines showed that miR-320a significantly inhibited cancer cell migration and invasion. Moreover, we found that lysosomal-associated membrane protein 1 (LAMP1) was a direct target of miR-320a in PCa cells. Silencing of LAMP1 using siRNA significantly inhibited cell proliferation, migration, and invasion in PCa cells. Overexpression of LAMP1 was observed in PCa and CRPC clinical specimens. Moreover, downstream pathways were identified using si-LAMP1-transfected cells. The discovery of tumor-suppressive miR-320a-mediated pathways may provide important insights into the potential mechanisms of PCa metastasis.
Cancer Science | 2017
Keiichi Koshizuka; Toyoyuki Hanazawa; Naoko Kikkawa; Takayuki Arai; Atsushi Okato; Akira Kurozumi; Mayuko Kato; Koji Katada; Yoshitaka Okamoto; Naohiko Seki
For patients with head and neck squamous cell carcinoma (HNSCC), survival rates have not improved due to local recurrence and distant metastasis. Current targeted molecular therapies do not substantially benefit HNSCC patients. Therefore, it is necessary to use advanced genomic approaches to elucidate the molecular mechanisms underlying the aggressiveness of HNSCC cells. Analysis of our microRNA (miRNA) expression signature by RNA sequencing showed that the miR‐199 family (miR‐199a‐5p, miR‐199a‐3p, miR‐199b‐5p and miR‐199b‐3p) was significantly reduced in cancer tissues. Ectopic expression of mature miRNA demonstrated that all members of the miR‐199 family inhibited cancer cell migration and invasion by HNSCC cell lines (SAS and HSC3). These findings suggested that both passenger strands and guide strands of miRNA are involved in cancer pathogenesis. In silico database and genome‐wide gene expression analyses revealed that the gene coding for integrin α3 (ITGA3) was regulated by all members of the miR‐199 family in HNSCC cells. Knockdown of ITGA3 significantly inhibited cancer cell migration and invasion by HNSCC cells. Moreover, overexpression of ITGA3 was confirmed in HNSCC specimens, and high expression of ITGA3 predicted poorer survival of the patients (P = 0.0048). Our data revealed that both strands of pre‐miR‐199a (miR‐199a‐5p and miR‐199a‐3p) and pre‐miR‐199b (miR‐199b‐5p and miR‐199b‐3p) acted as anti‐tumor miRNA in HNSCC cells. Importantly, the involvement of passenger strand miRNA in the regulation of cellular processes is a novel concept in RNA research. Novel miRNA‐based approaches for HNSCC can be used to identify potential targets for the development of new therapeutic strategies.
British Journal of Cancer | 2016
Yusuke Goto; Satoko Kojima; Akira Kurozumi; Mayuko Kato; Atsushi Okato; Ryosuke Matsushita; Tomohiko Ichikawa; Naohiko Seki
Background:MicroRNA-224 (miR-224) and microRNA-452 (miR-452) are closely located on the human chromosome Xq28 region. miR-224 functions as a tumour suppressor by targeting tumour protein D52 (TPD52) in prostate cancer (PCa). Here, we aimed to investigate the functional significance of miR-452 in PCa cells.Methods:Functional studies of PCa cells were performed using transfection with mature miRNAs or siRNAs. Genome-wide gene expression analysis, in silico analysis, and dual-luciferase reporter assays were applied to identify miRNA targets. The association between miR-452 levels and overall patient survival was estimated by the Kaplan–Meier method.Results:Expression of miR-452 was significantly downregulated in PCa tissues. Transfection with mature miR-452 inhibited the migration and invasion of PCa cells. Kaplan–Meier survival curves showed that low expression of miR-452 predicted a short duration of progression to castration-resistant PCa. WW domain-containing E3 ubiquitin protein ligase-1 (WWP1) was a direct target of miR-452, and knockdown of WWP1 inhibited the migration and invasion of PCa cells. WWP1 was upregulated in PCa clinical specimens.Conclusions:Regulation of the miR-452–WWP1 axis contributed to PCa cell migration and invasion, and elucidation of downstream signalling of this axis will provide new insights into the mechanisms of PCa oncogenesis and metastasis.
Journal of Human Genetics | 2017
Mayuko Kato; Akira Kurozumi; Yusuke Goto; Ryosuke Matsushita; Atsushi Okato; Rika Nishikawa; Ichiro Fukumoto; Keiichi Koshizuka; Tomohiko Ichikawa; Naohiko Seki
Our recent studies of microRNA (miRNA) expression signatures of prostate cancer (PCa) showed that six miRNAs (specifically, miR-26a, miR-26b, miR-29a, miR-29b, miR-29c and miR-218) were markedly reduced in cancer tissues. Moreover, ectopic expression of these miRNAs suppressed PCa cell aggressiveness, indicating that these miRNAs acted in concert to regulate genes that promoted metastasis. Genome-wide gene expression analysis and in silico database analysis identified a total of 35 candidate genes that promoted metastasis and were targeted by these 6 miRNAs. Using luciferase reporter assays, we showed that the lysyl oxidase-like 2 (LOXL2) gene was directly controlled by these tumor-suppressive miRNAs in PCa cells. Overexpression of LOXL2 was confirmed in PCa tissues and knockdown of the LOXL2 gene markedly inhibited the migration and invasion of PCa cells. Aberrant expression of LOXL2 enhanced migration and invasion of PCa cells. Downregulation of antitumor miRNAs might disrupt the tightly controlled RNA networks found in normal cells. New insights into the novel molecular mechanisms of PCa pathogenesis was revealed by antitumor miRNA-regulated RNA networks.