Attila Csordas
European Bioinformatics Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Attila Csordas.
Nature Biotechnology | 2014
Juan Antonio Vizcaíno; Eric W. Deutsch; Rui Wang; Attila Csordas; Florian Reisinger; Daniel Ríos; Jose Ángel Dianes; Zhi-Jun Sun; Terry Farrah; Nuno Bandeira; Pierre-Alain Binz; Ioannis Xenarios; Martin Eisenacher; Gerhard Mayer; Laurent Gatto; Alex Campos; Robert J. Chalkley; Hans-Joachim Kraus; Juan Pablo Albar; Salvador Martínez-Bartolomé; Rolf Apweiler; Gilbert S. Omenn; Lennart Martens; Andrew R. Jones; Henning Hermjakob
5. Tools available and ways to submit data to PX ............................................................. 11 5.1. MS/MS data submissions to PRIDE .................................................................................... 11 5.1.1. Creation of supported files for “Complete” submissions .................................................. 11 5.1.1.1. PRIDE XML .................................................................................................................................. 11 5.1.1.2. mzIdentML ................................................................................................................................. 13 5.1.2. Checking the files before submission (initial quality assessment) ..................................... 14 5.1.3. File submission to PRIDE: the PX submission tool ............................................................. 15 5.1.3.1. General Information ................................................................................................................... 15 5.1.3.2. Functionality, Design and Implementation Details .................................................................... 15 5.1.3.3. New open source libraries made available with PX submission tool ......................................... 18 5.1.3.4. PX Submission Tool Java Web Start ............................................................................................ 18 5.1.4. File submission to PRIDE: Command line support using Aspera ........................................ 19 5.1.5. Examples of Partial submissions to PRIDE ......................................................................... 19 5.2. SRM data submissions via PASSEL ..................................................................................... 20
Nucleic Acids Research | 2012
Juan Antonio Vizcaíno; Richard G. Côté; Attila Csordas; Jose Ángel Dianes; Antonio Fabregat; Joseph M. Foster; Johannes Griss; Emanuele Alpi; Melih Birim; Javier Contell; Gavin O’Kelly; Andreas Schoenegger; David Ovelleiro; Yasset Perez-Riverol; Florian Reisinger; Daniel Ríos; Rui Wang; Henning Hermjakob
The PRoteomics IDEntifications (PRIDE, http://www.ebi.ac.uk/pride) database at the European Bioinformatics Institute is one of the most prominent data repositories of mass spectrometry (MS)-based proteomics data. Here, we summarize recent developments in the PRIDE database and related tools. First, we provide up-to-date statistics in data content, splitting the figures by groups of organisms and species, including peptide and protein identifications, and post-translational modifications. We then describe the tools that are part of the PRIDE submission pipeline, especially the recently developed PRIDE Converter 2 (new submission tool) and PRIDE Inspector (visualization and analysis tool). We also give an update about the integration of PRIDE with other MS proteomics resources in the context of the ProteomeXchange consortium. Finally, we briefly review the quality control efforts that are ongoing at present and outline our future plans.
Nucleic Acids Research | 2016
Juan Antonio Vizcaíno; Attila Csordas; Noemi del-Toro; Jose Ángel Dianes; Johannes Griss; Ilias Lavidas; Gerhard Mayer; Yasset Perez-Riverol; Florian Reisinger; Tobias Ternent; Qing-Wei Xu; Rui Wang; Henning Hermjakob
The PRoteomics IDEntifications (PRIDE) database is one of the world-leading data repositories of mass spectrometry (MS)-based proteomics data. Since the beginning of 2014, PRIDE Archive (http://www.ebi.ac.uk/pride/archive/) is the new PRIDE archival system, replacing the original PRIDE database. Here we summarize the developments in PRIDE resources and related tools since the previous update manuscript in the Database Issue in 2013. PRIDE Archive constitutes a complete redevelopment of the original PRIDE, comprising a new storage backend, data submission system and web interface, among other components. PRIDE Archive supports the most-widely used PSI (Proteomics Standards Initiative) data standard formats (mzML and mzIdentML) and implements the data requirements and guidelines of the ProteomeXchange Consortium. The wide adoption of ProteomeXchange within the community has triggered an unprecedented increase in the number of submitted data sets (around 150 data sets per month). We outline some statistics on the current PRIDE Archive data contents. We also report on the status of the PRIDE related stand-alone tools: PRIDE Inspector, PRIDE Converter 2 and the ProteomeXchange submission tool. Finally, we will give a brief update on the resources under development ‘PRIDE Cluster’ and ‘PRIDE Proteomes’, which provide a complementary view and quality-scored information of the peptide and protein identification data available in PRIDE Archive.
Nature Biotechnology | 2012
Rui Wang; Antonio Fabregat; Daniel Ríos; David Ovelleiro; Joseph M. Foster; Richard G. Côté; Johannes Griss; Attila Csordas; Yasset Perez-Riverol; Florian Reisinger; Henning Hermjakob; Lennart Martens; Juan Antonio Vizcaíno
This work was supported by the Wellcome Trust (grant number WT085949MA) and EMBL core funding. R.G.C. is supported by EU FP7 grant SLING (grant number 226073). J.A.V. is supported by the EU FP7 grants LipidomicNet (grant number 202272) and ProteomeXchange (grant number 260558). A.F. was partially supported by the Spanish network COMBIOMED (RD07/0067/0006, ISCIII-FIS). L.M. would like to acknowledge support from the EU FP7 PRIME-XS grant (grant number 262067).
Nucleic Acids Research | 2017
Eric W. Deutsch; Attila Csordas; Zhi Sun; Andrew F. Jarnuczak; Yasset Perez-Riverol; Tobias Ternent; David S. Campbell; Manuel Bernal-Llinares; Shujiro Okuda; Shin Kawano; Robert L. Moritz; Jeremy J. Carver; Mingxun Wang; Yasushi Ishihama; Nuno Bandeira; Henning Hermjakob; Juan Antonio Vizcaíno
The ProteomeXchange (PX) Consortium of proteomics resources (http://www.proteomexchange.org) was formally started in 2011 to standardize data submission and dissemination of mass spectrometry proteomics data worldwide. We give an overview of the current consortium activities and describe the advances of the past few years. Augmenting the PX founding members (PRIDE and PeptideAtlas, including the PASSEL resource), two new members have joined the consortium: MassIVE and jPOST. ProteomeCentral remains as the common data access portal, providing the ability to search for data sets in all participating PX resources, now with enhanced data visualization components. We describe the updated submission guidelines, now expanded to include four members instead of two. As demonstrated by data submission statistics, PX is supporting a change in culture of the proteomics field: public data sharing is now an accepted standard, supported by requirements for journal submissions resulting in public data release becoming the norm. More than 4500 data sets have been submitted to the various PX resources since 2012. Human is the most represented species with approximately half of the data sets, followed by some of the main model organisms and a growing list of more than 900 diverse species. Data reprocessing activities are becoming more prominent, with both MassIVE and PeptideAtlas releasing the results of reprocessed data sets. Finally, we outline the upcoming advances for ProteomeXchange.
Molecular & Cellular Proteomics | 2012
Richard G. Côté; Johannes Griss; Jose Ángel Dianes; Rui Wang; James C. Wright; Henk van den Toorn; Bas van Breukelen; Albert J. R. Heck; Niels Hulstaert; Lennart Martens; Florian Reisinger; Attila Csordas; David Ovelleiro; Yasset Perez-Rivevol; Harald Barsnes; Henning Hermjakob; Juan Antonio Vizcaíno
The original PRIDE Converter tool greatly simplified the process of submitting mass spectrometry (MS)-based proteomics data to the PRIDE database. However, after much user feedback, it was noted that the tool had some limitations and could not handle several user requirements that were now becoming commonplace. This prompted us to design and implement a whole new suite of tools that would build on the successes of the original PRIDE Converter and allow users to generate submission-ready, well-annotated PRIDE XML files. The PRIDE Converter 2 tool suite allows users to convert search result files into PRIDE XML (the format needed for performing submissions to the PRIDE database), generate mzTab skeleton files that can be used as a basis to submit quantitative and gel-based MS data, and post-process PRIDE XML files by filtering out contaminants and empty spectra, or by merging several PRIDE XML files together. All the tools have both a graphical user interface that provides a dialog-based, user-friendly way to convert and prepare files for submission, as well as a command-line interface that can be used to integrate the tools into existing or novel pipelines, for batch processing and power users. The PRIDE Converter 2 tool suite will thus become a cornerstone in the submission process to PRIDE and, by extension, to the ProteomeXchange consortium of MS-proteomics data repositories.
BMC Bioinformatics | 2012
Steven Lewis; Attila Csordas; Sarah A. Killcoyne; Henning Hermjakob; Michael R. Hoopmann; Robert L. Moritz; Eric W. Deutsch; John P. Boyle
BackgroundFor shotgun mass spectrometry based proteomics the most computationally expensive step is in matching the spectra against an increasingly large database of sequences and their post-translational modifications with known masses. Each mass spectrometer can generate data at an astonishingly high rate, and the scope of what is searched for is continually increasing. Therefore solutions for improving our ability to perform these searches are needed.ResultsWe present a sequence database search engine that is specifically designed to run efficiently on the Hadoop MapReduce distributed computing framework. The search engine implements the K-score algorithm, generating comparable output for the same input files as the original implementation. The scalability of the system is shown, and the architecture required for the development of such distributed processing is discussed.ConclusionThe software is scalable in its ability to handle a large peptide database, numerous modifications and large numbers of spectra. Performance scales with the number of processors in the cluster, allowing throughput to expand with the available resources.
Trends in Genetics | 2013
Arie Budovsky; Thomas Craig; Jingwei Wang; Robi Tacutu; Attila Csordas; Joana Lourenço; Vadim E. Fraifeld; João Pedro de Magalhães
Understanding the genetic basis of human longevity remains a challenge but could lead to life-extending interventions and better treatments for age-related diseases. Toward this end we developed the LongevityMap (http://genomics.senescence.info/longevity/), the first database of genes, loci, and variants studied in the context of human longevity and healthy ageing. We describe here its content and interface, and discuss how it can help to unravel the genetics of human longevity.
Database | 2012
Attila Csordas; David Ovelleiro; Rui Wang; Joseph M. Foster; Daniel Ríos; Juan Antonio Vizcaíno; Henning Hermjakob
The PRoteomics IDEntifications (PRIDE) database is a large public proteomics data repository, containing over 270 million mass spectra (by November 2011). PRIDE is an archival database, providing the proteomics data supporting specific scientific publications in a computationally accessible manner. While PRIDE faces rapid increases in data deposition size as well as number of depositions, the major challenge is to ensure a high quality of data depositions in the context of highly diverse proteomics work flows and data representations. Here, we describe the PRIDE curation pipeline and its practical application in quality control of complex data depositions. Database URL: http://www.ebi.ac.uk/pride/.
Proteomics | 2016
Marc Vaudel; Kenneth Verheggen; Attila Csordas; Helge Ræder; Frode S. Berven; Lennart Martens; Juan Antonio Vizcaíno; Harald Barsnes
In a global effort for scientific transparency, it has become feasible and good practice to share experimental data supporting novel findings. Consequently, the amount of publicly available MS‐based proteomics data has grown substantially in recent years. With some notable exceptions, this extensive material has however largely been left untouched. The time has now come for the proteomics community to utilize this potential gold mine for new discoveries, and uncover its untapped potential. In this review, we provide a brief history of the sharing of proteomics data, showing ways in which publicly available proteomics data are already being (re‐)used, and outline potential future opportunities based on four different usage types: use, reuse, reprocess, and repurpose. We thus aim to assist the proteomics community in stepping up to the challenge, and to make the most of the rapidly increasing amount of public proteomics data.