Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Attila Szep is active.

Publication


Featured researches published by Attila Szep.


Nano Letters | 2013

High-Contrast Electrooptic Modulation of a Photonic Crystal Nanocavity by Electrical Gating of Graphene

Xuetao Gan; Ren-Jye Shiue; Yuanda Gao; Kin Fai Mak; Xinwen Yao; Luozhou Li; Attila Szep; Dennis E. Walker; James Hone; Tony F. Heinz; Dirk Englund

We demonstrate high-contrast electro-optic modulation of a photonic crystal nanocavity integrated with an electrically gated monolayer graphene. A silicon air-slot nanocavity provides strong overlap between the resonant optical field and graphene. Tuning the Fermi energy of the graphene layer to 0.85 eV enables strong control of its optical conductivity at telecom wavelengths, which allows modulation of cavity reflection in excess of 10 dB for a swing voltage of only 1.5 V. The cavity resonance at 1570 nm is found to undergo a shift in wavelength of nearly 2 nm, together with a 3-fold increase in quality factor. These observations enable a cavity-enhanced determination of graphenes complex optical sheet conductivity at different doping levels. Our simple device demonstrates the feasibility of high-contrast, low-power, and frequency-selective electro-optic modulators in graphene-integrated silicon photonic integrated circuits.


Nano Letters | 2015

High-Speed Electro-Optic Modulator Integrated with Graphene-Boron Nitride Heterostructure and Photonic Crystal Nanocavity

Yuanda Gao; Ren-Jye Shiue; Xuetao Gan; Luozhou Li; Cheng Peng; Inanc Meric; Lei Wang; Attila Szep; Dennis E. Walker; James Hone; Dirk Englund

Nanoscale and power-efficient electro-optic (EO) modulators are essential components for optical interconnects that are beginning to replace electrical wiring for intra- and interchip communications.1-4 Silicon-based EO modulators show sufficient figures of merits regarding device footprint, speed, power consumption, and modulation depth.5-11 However, the weak electro-optic effect of silicon still sets a technical bottleneck for these devices, motivating the development of modulators based on new materials. Graphene, a two-dimensional carbon allotrope, has emerged as an alternative active material for optoelectronic applications owing to its exceptional optical and electronic properties.12-14 Here, we demonstrate a high-speed graphene electro-optic modulator based on a graphene-boron nitride (BN) heterostructure integrated with a silicon photonic crystal nanocavity. Strongly enhanced light-matter interaction of graphene in a submicron cavity enables efficient electrical tuning of the cavity reflection. We observe a modulation depth of 3.2 dB and a cutoff frequency of 1.2 GHz.


IEEE Photonics Technology Letters | 2006

High-speed AJL8/APC polymer modulator

Richard Michalak; Ying-Hao Kuo; Fazio Nash; Attila Szep; Jared R. Caffey; Paul M. Payson; Franz Haas; Brian McKeon; Paul R. Cook; George A. Brost; Jingdong Luo; Alex K.-Y. Jen; Larry R. Dalton; William H. Steier

High-speed polymer modulators were fabricated using low-Vpi AJL8 chromophore in amorphous polycarbonate, and highly calibrated frequency response measurements were obtained using convenient coplanar-microstrip transitions. These Mach-Zehnder modulators show good frequency response to 50 GHz, with a loss and velocity mismatch-limited Vpi at 50 GHz <12 V. The measurements establish AJL8 as an excellent candidate for future military analog optical links


Applied Physics Letters | 2013

Enhanced photodetection in graphene-integrated photonic crystal cavity

Ren-Jye Shiue; Xuetao Gan; Yuanda Gao; Luozhou Li; Xinwen Yao; Attila Szep; Dennis E. Walker; James Hone; Dirk Englund

We demonstrate the controlled enhancement of photoresponsivity in a graphene photodetector by coupling to slow light modes in a long photonic crystal linear defect cavity. Near the Brillouin zone (BZ) boundary, spectral coupling of multiple cavity modes results in broad-band photocurrent enhancement from 1530 nm to 1540 nm. Away from the BZ boundary, individual cavity resonances enhance the photocurrent eight-fold in narrow resonant peaks. Optimization of the photocurrent via critical coupling of the incident field with the graphene-cavity system is discussed. The enhanced photocurrent demonstrates the feasibility of a wavelength-scale graphene photodetector for efficient photodetection with high spectral selectivity and broadband response.


Applied Physics Letters | 2005

Radiation resistance of electro-optic polymer-based modulators

Edward W. Taylor; James E. Nichter; Fazio Nash; Franz Haas; Attila Szep; Richard Michalak; Brian M. Flusche; Paul R. Cook; Tom A. McEwen; Brian McKeon; Paul M. Payson; George A. Brost; Andrew R. Pirich; C.M. Castaneda; Boris Tsap; Harold R. Fetterman

Mach–Zehnder interferometric electro-optic polymer modulators composed of highly nonlinear phenyltetraene bridge-type chromophores within an amorphous polycarbonate host matrix were investigated for their resistance to gamma rays and 25.6 MeV protons. No device failures were observed and the majority of irradiated modulators exhibited decreases in half-wave voltage and optical insertion losses compared to nonirradiated control samples undergoing aging processes. Irradiated device responses were attributed to scission, cross-linking, and free volume processes. The data suggests that strongly poled devices are less likely to de-pole under the influence of ionizing radiation.


Optics Express | 2009

Efficient fiber coupler for vertical silicon slot waveguides.

Haishan Sun; Antao Chen; Attila Szep; Larry R. Dalton

A mode size converter for efficient fiber coupling to silicon slot waveguides was proposed and demonstrated. It consists of two inverted lateral tapers that extend from the two strips of the silicon slot waveguide, and an overlaid low index waveguide with expanded mode size. Parameters including taper length and taper tip width were optimized with computer simulations. Samples were fabricated with a combined electron beam and photolithography process on a silicon-on-insulator wafer. The measured coupling loss to a standard single mode optical fiber was reduced by 8 dB for TE mode and 5.2 dB for TM mode with the converter.


Optics Letters | 2012

Reduction of scattering loss of silicon slot waveguides by RCA smoothing

Haishan Sun; Antao Chen; Don C. Abeysinghe; Attila Szep; Richard S. Kim

Because of stronger optical confinement density, silicon slot waveguides tend to have higher scattering loss than normal ridge waveguides with same sidewall roughness. A wet chemical process is found to be highly effective in reducing the surface roughness and scattering loss. A reduction in scattering loss by 10.2 dB/cm for TE and 8.5 dB/cm for TM polarizations has been achieved.


Journal of Lightwave Technology | 2011

Achieving Higher Modulation Efficiency in Electrooptic Polymer Modulator With Slotted Silicon Waveguide

Antao Chen; Haishan Sun; Attila Szep; Shouyuan Shi; Dennis W. Prather; Zhou Lin; Richard S. Kim; Don C. Abeysinghe

Silicon slot waveguide based Mach-Zehnder interferometric modulators with electrooptic polymers in the slot have the advantage of low half-wave voltage-length product (Vπ *L). Several key aspects of this unconventional electrooptic polymer modulator design to optimize the modulator performance are studied in this work. Both computer simulation and experiments have been conducted to understand the relationship between modulator performance such as modulation efficiency, optical loss and the waveguide design parameters. Techniques to achieve efficient poling of electrooptic polymers in the silicon slot waveguide have been developed. The doping of the silicon to enhance conductivity for efficient poling and the trade-off between conductivity and optical loss are experimentally investigated. Surface passivation of silicon nanophotonic structures has been found to be effective in improving poling efficiency. By applying these techniques to a silicon slot waveguide Mach-Zehnder modulator, a low Vπ*L of 0.52 V ·cm has been achieved. Finally travelling wave electrode designs have been evaluated and the results show that the bandwidth is mainly limited by the attenuation of the radio frequency signal in the electrode and a standard coplanar waveguide electrode design is able to reach 20 GHz in modulators of silicon slot waveguide embedded in electrooptic polymer.


Optical Science and Technology, SPIE's 48th Annual Meeting | 2003

Behavior of NLO polymer modulators irradiated by gamma rays

Edward W. Taylor; James E. Nichter; Fazio Nash; Richard Michalak; Franz Haas; Paul M. Payson; Paul R. Cook; Thomas E. McEwan; Brian McKeon; Attila Szep; B. Flushe; Andrew R. Pirich; George A. Brost; James G. Grote; John S. Zetts; Perry P. Yaney; Emily M. Heckman

Two second-order nonlinear optical chromophoric materials were investigated for their response to gamma-ray irradiations for doses ranging from approximately 10-104 krad(Si). Thin film polymer modulators composed of a mixture of amorphous polycarbonate and phenyltetraene [APC/CLD-1(CPW-1)] active regions with UV upper and lower UV claddings were investigated for their pre- and post-irradiation behavior. Modulator Vπ insertion loss, and extinction ratio responses were examined, while a blend of salmon deoxyribonucleic acid (DNA)- hexadeCetylTriMethylAmmonium Chloride (CTMA) film samples were studied for their spectral response following irradiations over the spectral range λ=240-2600 nm. Following irradiation ranging from 9.6-104 krad(Si), the DNA/CTMA films exhibited losses in transmissivity over the spectral range λ=882-2600 nm and increased transmissivity over portions of the 240 nm < λ < 882 nm band. Data from the study also suggested that strongly poled APC/CPW-1 modulators operating at λ=1550 nm and exhibiting low Vπ values were less likely to have their half-wave voltages affected by ionizing radiation. The optical insertion losses for the majority of the APC/CPW-1 irradiated mdolators were found to decrease following irradiation. Discussion of the experimental results and mechanisms believed responsible for the post-irradiation behavior and results are presented.


Optical Science and Technology, the SPIE 49th Annual Meeting | 2004

Radiation-resistant polymer-based photonics for space applications

Edward W. Taylor; James E. Nichter; Fazio Nash; Franz Haas; Attila Szep; Richard Michalak; Brian M. Flusche; Paul L. Repak; George A. Brost; Andrew R. Pirich; Douglas M. Craig; Dang T. Le; David A. Cardimona; Harold R. Fetterman; Boris Tsap; C.M. Castaneda; Richard R. Barto; Tingying Zeng; David Wood; Richard O. Claus

Empirical data regarding the radiation induced responses of Mach Zehnder interferometric electro-optic polymer based modulators (PBMs) operating at 1310 and 1550 nm and broadband InP quantum dot (QD) polymer photodetectors (PPDs) operating into the near infrared (NIR) are reported. Modulators composed of spun-on materials and hybrid electostatically self assembled (ESA) and spun-on NLO materials are examined for changes to their half-wave voltage and insertion losses following a gamma-ray total dose of 163 krad(Si) and irradiation by 25.6 MeV protons at a fluence of ~1011 cm-2. Pre- and post- irradiation responses of ESA grown polymer detectors using InP QDs are examined for photovoltage degradation and aging effects. The data indicates and excellent potential for developing polymer based photonic (PBP) devices with increased radiation resistance suitable for transition to photonic space applications.

Collaboration


Dive into the Attila Szep's collaboration.

Top Co-Authors

Avatar

Antao Chen

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard S. Kim

Air Force Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

Dennis E. Walker

Air Force Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

Dirk Englund

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Haishan Sun

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luozhou Li

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Ren-Jye Shiue

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge