Atul Padole
Harvard University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Atul Padole.
American Journal of Roentgenology | 2015
Atul Padole; Ranish Deedar Ali Khawaja; Mannudeep K. Kalra; Sarabjeet Singh
1. CT radiation dose optimization is one of the major concerns for the scientific community. 2. CT image quality is dependent on the selected image reconstruction algorithm. 3. Iterative reconstruction algorithms have reemerged with the potential of radiation dose optimization by lowering image noise. 4. Tube current is the most common parameter used to reduce radiation dose along with iterative reconstruction. 5. Tube potential (kV) is also used for dose optimization with iterative reconstruction in CT angiography protocols and small patients.
Journal of Computer Assisted Tomography | 2014
Ranish Deedar Ali Khawaja; Sarabjeet Singh; Matthew D. Gilman; Amita Sharma; Synho Do; Sarvenaz Pourjabbar; Atul Padole; Diego Lira; Kevin K. Brown; Jo-Anne O. Shepard; Mannudeep K. Kalra
Purpose To assess lesion detection and diagnostic confidence of computed tomography (CT) of the chest performed at less than 1 mSv with 2 iterative reconstruction (IR) techniques. Materials and Methods Ten patients gave written informed consent for the acquisitions of images at submillisievert dose (0.9 mSv), in addition to clinical standard-dose (SD) chest CT (2.9 mSv). Submillisievert images were reconstructed with iDose4 and iterative model reconstruction (IMR). Two radiologists assessed lesion detection, margins, diagnostic confidence, and visibility of small structures. Objective noise and noise spectral density were measured. Results Lesion detection was identical for standard-dose filtered back projection (FBP), submSv iDose4, and submSv IMR. Lesion margins were better seen for 30% of detected lung lesions with submSv IMR compared to standard-dose FBP and submSv iDose4 (P < 0.05). Visibility of abdominal structures, and diagnostic confidence with submSv iDose4 and submSv IMR were similar to standard-dose FBP. There was 21% to 64% noise reduction with submSv IMR and 1% to 15% higher noise with iDose4 compared to standard-dose FBP (P < 0.0001). Conclusions Submillisievert IMR improves delineation of lesion margins compared to standard-dose FBP and submSv iDose4.
European Journal of Radiology | 2015
Ranish Deedar Ali Khawaja; Sarabjeet Singh; Michael A. Blake; Mukesh G. Harisinghani; Garry Choy; Ali Karosmangulu; Atul Padole; Synho Do; Kevin M. Brown; Richard Thompson; Thomas Morton; Nilgoun Raihani; Thomas Koehler; Mannudeep K. Kalra
PURPOSE To assess lesion detection and image quality parameters of a knowledge-based Iterative Model Reconstruction (IMR) in reduced dose (RD) abdominal CT examinations. MATERIALS AND METHODS This IRB-approved prospective study included 82 abdominal CT examinations performed for 41 consecutive patients (mean age, 62 ± 12 years; F:M 28:13) who underwent a RD CT (SSDE, 1.5 mGy ± 0.4 [∼ 0.9 mSv] at 120 kV with 17-20 mAs/slice) immediately after their standard dose (SD) CT exam (10 mGy ± 3 [∼ 6 mSv] at 120 kV with automatic exposure control) on 256 MDCT (iCT, Philips Healthcare). SD data were reconstructed using filtered back projection (FBP). RD data were reconstructed with FBP and IMR. Four radiologists used a five-point scale (1=image quality better than SD CT to 5=image quality unacceptable) to assess both subjective image quality and artifacts. Lesions were first detected on RD FBP images. RD IMR and RD FBP images were then compared side-by-side to SD-FBP images in an independent, randomized and blinded fashion. Friedmans test and intraclass correlation coefficient were used for data analysis. Objective measurements included image noise and attenuation as well as noise spectral density (NSD) curves to assess the noise in frequency domain were obtained. In addition, a low-contrast phantom study was performed. RESULTS All true lesions (ranging from 32 to 55) on SD FBP images were detected on RD IMR images across all patients. RD FBP images were unacceptable for subjective image quality. Subjective ratings showed acceptable image quality for IMR for organ margins, soft-tissue structures, and retroperitoneal lymphadenopathy, compared to RD FBP in patients with a BMI ≤ 25 kg/m(2) (median-range, 2-3). Irrespective of patient BMI, subjective ratings for hepatic/renal cysts, stones and colonic diverticula were significantly better with RD IMR images (P<0.01). Objective image noise for RD FBP was 57-66% higher, and for RD IMR was 8-56% lower than that for SD-FBP (P<0.01). NSD showed significantly lower noise in the frequency domain with IMR in all patients compared to FBP. CONCLUSION IMR considerably improved both objective and subjective image quality parameters of RD abdominal CT images compared to FBP in patients with BMI less than or equal to 25 kg/m(2).
American Journal of Roentgenology | 2014
Atul Padole; Sarabjeet Singh; Jeanne B. Ackman; Carol C. Wu; Synho Do; Sarvenaz Pourjabbar; Ranish Deedar Ali Khawaja; Alexi Otrakji; Subba R. Digumarthy; Jo-Anne O. Shepard; Mannudeep K. Kalra
OBJECTIVE The purpose of this study was to compare submillisievert chest CT images reconstructed with filtered back projection (FBP), SafeCT, adaptive statistical iterative reconstruction (ASIR), and model-based iterative reconstruction (MBIR) with standard of care FBP images. SUBJECTS AND METHODS Fifty patients (33 men and 17 women; mean age [± SD], 62 ± 10 years) undergoing routine chest CT gave written informed consent for acquisition of an additional submillisievert chest CT series with reduced tube current but identical scanning length as standard of care chest CT. Sinogram data of the submillisievert series were reconstructed with FBP, SafeCT, ASIR, and MBIR and compared with FBP images at standard-dose chest CT (n = 8 × 50 = 400 series). Two thoracic radiologists performed independent comparison for visualization of lesion margin, visibility of small structures, and diagnostic acceptability. Objective noise measurements and noise spectral density were obtained. RESULTS Of 287 detected lesions, 162 were less than 1-cm noncalcified nodules. Lesion margins were well seen on all submillisievert reconstruction images except MBIR, on which they were poorly visualized. Likewise, only submillisievert MBIR images were suboptimal for visibility of normal structures, such as pulmonary vessels in the outer 2 cm of the lung, interlobular fissures, and subsegmental bronchial walls. MBIR had the lowest image noise compared with other techniques. CONCLUSION FBP, SafeCT, ASIR, and MBIR can enable optimal lesion evaluation on chest CT acquired at a volume CT dose index of 2 mGy. However, all submillisievert reconstruction techniques were suboptimal for visualization of mediastinal structures. Submillisievert MBIR images were suboptimal for visibility of normal lung structures despite showing lower image noise.
Pediatric Radiology | 2015
Ranish Deedar Ali Khawaja; Sarabjeet Singh; Alexi Otrakji; Atul Padole; Ruth P. Lim; Katherine Nimkin; Sjirk J. Westra; Mannudeep K. Kalra; Michael S. Gee
Dose reduction in children undergoing CT scanning is an important priority for the radiology community and public at large. Drawbacks of radiation reduction are increased image noise and artifacts, which can affect image interpretation. Iterative reconstruction techniques have been developed to reduce noise and artifacts from reduced-dose CT examinations, although reconstruction algorithm, magnitude of dose reduction and effects on image quality vary. We review the reconstruction principles, radiation dose potential and effects on image quality of several iterative reconstruction techniques commonly used in clinical settings, including 3-D adaptive iterative dose reduction (AIDR-3D), adaptive statistical iterative reconstruction (ASIR), iDose, sinogram-affirmed iterative reconstruction (SAFIRE) and model-based iterative reconstruction (MBIR). We also discuss clinical applications of iterative reconstruction techniques in pediatric abdominal CT.
Radiologic Clinics of North America | 2014
Sarabjeet Singh; Mannudeep K. Kalra; Ranish Deedar Ali Khawaja; Atul Padole; Sarvenaz Pourjabbar; Diego Lira; Jo-Anne O. Shepard; Subba R. Digumarthy
In the past 3 decades, radiation dose from computed tomography (CT) has contributed to an increase in overall radiation exposure to the population. This increase has caused concerns over harmful effects of radiation dose associated with CT in scientific publications as well as in the lay press. To address these concerns, and reduce radiation dose, several strategies to optimize radiation dose have been developed and assessed, including manual or automatic adjustment of scan parameters. This article describes conventional and contemporary techniques to reduce radiation dose associated with chest CT.
American Journal of Roentgenology | 2015
Diego Lira; Atul Padole; Mannudeep K. Kalra; Sarabjeet Singh
OBJECTIVE This article describes tube potential and its effect on image quality and radiation dose for CT in different body regions and clinical indications. CONCLUSION Tube potential is an important scanning parameter for radiation dose optimization. Reduction of tube potential results in increased image contrast of iodine-enhanced CT as well as increased image noise.
Journal of Thoracic Imaging | 2013
Sarabjeet Singh; Ranish Deedar Ali Khawaja; Sarvenaz Pourjabbar; Atul Padole; Diego Lira; Mannudeep K. Kalra
Revolutionary developments in multidetector-row computed tomography (CT) scanner technology offer several advantages for imaging of cardiothoracic disorders. As a result, expanding applications of CT now account for >85 million CT examinations annually in the United States alone. Given the large number of CT examinations performed, concerns over increase in population-based risk for radiation-induced carcinogenesis have made CT radiation dose a top safety concern in health care. In response to this concern, several technologies have been developed to reduce the dose with more efficient use of scan parameters and the use of “newer” image reconstruction techniques. Although iterative image reconstruction algorithms were first introduced in the 1970s, filtered back projection was chosen as the conventional image reconstruction technique because of its simplicity and faster reconstruction times. With subsequent advances in computational speed and power, iterative reconstruction techniques have reemerged and have shown the potential of radiation dose optimization without adversely influencing diagnostic image quality. In this article, we review the basic principles of different iterative reconstruction algorithms and their implementation for various clinical applications in cardiothoracic CT examinations for reducing radiation dose.
European Journal of Radiology | 2014
Ranish Deedar Ali Khawaja; Sarabjeet Singh; Rachna Madan; Amita Sharma; Atul Padole; Sarvenaz Pourjabbar; Subba R. Digumarthy; Jo-Anne O. Shepard; Mannudeep K. Kalra
PURPOSE To assess lesion detection and diagnostic image quality of filtered back projection (FBP) reconstruction technique in ultra low-dose chest CT examinations. METHODS AND MATERIALS In this IRB-approved ongoing prospective clinical study, 116 CT-image-series at four different radiation-doses were performed for 29 patients (age, 57-87 years; F:M - 15:12; BMI 16-32 kg/m(2)). All patients provided written-informed-consent for the acquisitions of additional ultra low-dose (ULD) series on a 256-slice MDCT (iCT, Philips Healthcare). In-addition to their clinical standard-dose chest CT (SD, 120 kV mean CTDIvol, 6 ± 1 mGy), ULD-CT was subsequently performed at three-dose-levels (0.9 mGy [120 kV]; 0.5 mGy [100 kV] and 0.2 mGy [80 kV]). Images were reconstructed with FBP (2.5mm 1.25 mm) resulting into four-stacks: SD-FBP (reference-standard), FBP0.9, FBP0.5, and FBP0.2. Four thoracic-radiologists from two-teaching-hospitals independently-evaluated data for lesion-detection and visibility-of-small-structures. Friedmans-non-parametric-test with post hoc Dunns-test was used for data-analysis. RESULTS Interobserver-agreement was substantial between radiologists (k=0.6-0.8). With pooled analysis, 146-pulmonary (27-groundglass-opacities, 64-solid-lung-nodules, 7-consolidations, 27-emphysema) and 347-mediastinal/soft tissue lesions (87-mediastinal, 46-hilar, 62-axillary-lymph-nodes, and 11-mediastinal-masses) were evaluated. Compared to the SD-FBP, 100% pulmonary-lesions were seen with FBP0.9, up to 81% with FBP0.5 (missed: 4), and up to 30% with FBP0.2 images (missed:16). Compared to SD-FBP, all enlarged mediastinal-lymph-nodes were seen with FBP0.9 images. All mediastinal-masses (>2 cm, 11/11) were seen equivalent to SD-FBP images at 0.9 mGy. Across all sizes of patients, FBP0.9 images had optimal visualization for lung findings. They were optimal for mediastinal soft tissues for only non-obese patients. CONCLUSION Filtered-back-projection technique allows optimal lesion detection and acceptable image quality for chest-CT examinations at CDTIvol of 0.9 mGy for lung and mediastinal findings in selected sizes of patients.
Acta Radiologica | 2015
Sarvenaz Pourjabbar; Sarabjeet Singh; Naveen M. Kulkarni; Victorine V. Muse; Subba R. Digumarthy; Ranish Deedar Ali Khawaja; Atul Padole; Synho Do; Mannudeep K. Kalra
Background Lowering radiation dose in computed tomography (CT) scan results in low quality noisy images. Iterative reconstruction techniques are used currently to lower image noise and improve the quality of images. Purpose To evaluate lesion detection and diagnostic acceptability of chest CT images acquired at CTDIvol of 1.8 mGy and processed with two different iterative reconstruction techniques. Material and Methods Twenty-two patients (mean age, 60 ± 14 years; men, 13; women, 9; body mass index, 27.4 ± 6.5 kg/m2) gave informed consent for acquisition of low dose (LD) series in addition to the standard dose (SD) chest CT on a 128 - multidetector CT (MDCT). LD images were reconstructed with SafeCT C4, L1, and L2 settings, and Safire S1, S2, and S3 settings. Three thoracic radiologists assessed LD image series (S1, S2, S3, C4, L1, and L2) for lesion detection and comparison of lesion margin, visibility of normal structures, and diagnostic confidence with SD chest CT. Inter-observer agreement (kappa) was calculated. Results Average CTDIvol was 6.4 ± 2.7 mGy and 1.8 ± 0.2 mGy for SD and LD series, respectively. No additional lesion was found in SD as compared to LD images. Visibility of ground-glass opacities and lesion margins, as well as normal structures visibility were not affected on LD. CT image visibility of major fissure and pericardium was not optimal in some cases (n = 5). Objective image noise in some low dose images processed with SafeCT and Safire was similar to SD images (P value > 0.5). Conclusion Routine LD chest CT reconstructed with iterative reconstruction technique can provide similar diagnostic information in terms of lesion detection, margin, and diagnostic confidence as compared to SD, regardless of the iterative reconstruction settings.