Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Aubie Shaw is active.

Publication


Featured researches published by Aubie Shaw.


Cancer Research | 2007

Inactivation of Apc in the Mouse Prostate Causes Prostate Carcinoma

Katia J. Bruxvoort; Holli M. Charbonneau; Troy A Giambernardi; James C. Goolsby; Chao Nan Qian; Cassandra R. Zylstra; Dan R. Robinson; Pradip Roy-Burman; Aubie Shaw; Bree D. Buckner-Berghuis; Robert E. Sigler; James H. Resau; Ruth Sullivan; Wade Bushman; Bart O. Williams

Alterations of the Wnt/beta-catenin signaling pathway are positively associated with the development and progression of human cancer, including carcinoma of the prostate. To determine the role of activated Wnt/beta-catenin signaling in mouse prostate carcinogenesis, we created a mouse prostate tumor model using probasin-Cre-mediated deletion of Apc. Prostate tumors induced by the deletion of Apc have elevated levels of beta-catenin protein and are highly proliferative. Tumor formation is fully penetrant and follows a consistent pattern of progression. Hyperplasia is observed as early as 4.5 weeks of age, and adenocarcinoma is observed by 7 months. Continued tumor growth usually necessitated sacrifice between 12 and 15 months of age. Despite the high proliferation rate, we have not observed metastasis of these tumors to the lymph nodes or other organs. Surgical castration of 6-week-old mice inhibited tumor formation, and castration of mice with more advanced tumors resulted in the partial regression of specific prostate glands. However, significant areas of carcinoma remained 2 months postcastration, suggesting that tumors induced by Apc loss of function are capable of growth under conditions of androgen depletion. We conclude that the prostate-specific deletion of Apc and the increased expression of beta-catenin associated with prostate carcinoma suggests a role for beta-catenin in prostate cancer and offers an appropriate animal model to investigate the interaction of Wnt signaling with other genetic and epigenetic signals in prostate carcinogenesis.


Oncogene | 2009

The Sonic Hedgehog pathway stimulates prostate tumor growth by paracrine signaling and recapitulates embryonic gene expression in tumor myofibroblasts.

Aubie Shaw; Jerry J. Gipp; Wade Bushman

The Hedgehog (Hh) pathway contributes to prostate cancer growth and progression. The presence of robust Sonic Hedgehog (Shh) expression in both normal prostate and localized cancer challenged us to explain the unique growth-promoting effect in cancer. We show here that paracrine Hh signaling exerts a non-cell autonomous effect on xenograft tumor growth and that Hh pathway activation in myofibroblasts alone is sufficient to stimulate tumor growth. Nine genes regulated by Hh in the mesenchyme of the developing prostate were found to be regulated in the stroma of Hh overexpressing xenograft tumors. Correlation analysis of gene expression in matched specimens of benign and malignant human prostate tissue revealed a partial five-gene fingerprint of Hh-regulated expression in stroma of all cancers and the complete nine-gene fingerprint in the subset of tumors exhibiting a reactive stroma. No expression fingerprint was observed in benign tissues. We conclude that changes in the prostate stroma due to association with cancer result in an altered transcriptional response to Hh that mimics the growth-promoting actions of the fetal mesenchyme. Patients with an abundance of myofibroblasts in biopsy tissue may comprise a subgroup that will exhibit a particularly good response to anti-Hh therapy.


PLOS ONE | 2013

Bone Morphogenetic Proteins Stimulate Mammary Fibroblasts to Promote Mammary Carcinoma Cell Invasion

Philip Owens; Hannah Polikowsky; Michael W. Pickup; Agnieszka E. Gorska; Bojana Jovanovic; Aubie Shaw; Sergey V. Novitskiy; Charles C. Hong; Harold L. Moses

Bone Morphogenetic Proteins (BMPs) are secreted cytokines that are part of the Transforming Growth Factor β (TGFβ) superfamily. BMPs have been shown to be highly expressed in human breast cancers, and loss of BMP signaling in mammary carcinomas has been shown to accelerate metastases. Interestingly, other work has indicated that stimulation of dermal fibroblasts with BMP can enhance secretion of pro-tumorigenic factors. Furthermore, treatment of carcinoma-associated fibroblasts (CAFs) derived from a mouse prostate carcinoma with BMP4 was shown to stimulate angiogenesis. We sought to determine the effect of BMP treatment on mammary fibroblasts. A large number of secreted pro-inflammatory cytokines and matrix-metallo proteases (MMPs) were found to be upregulated in response to BMP4 treatment. Fibroblasts that were stimulated with BMP4 were found to enhance mammary carcinoma cell invasion, and these effects were inhibited by a BMP receptor kinase antagonist. Treatment with BMP in turn elevated pro-tumorigenic secreted factors such as IL-6 and MMP-3. These experiments demonstrate that BMP may stimulate tumor progression within the tumor microenvironment.


BMC Developmental Biology | 2009

Hedgehog pathway responsiveness correlates with the presence of primary cilia on prostate stromal cells

Jingxian Zhang; Robert J. Lipinski; Jerry J. Gipp; Aubie Shaw; Wade Bushman

BackgroundHedgehog (Hh) signaling from the urogenital sinus (UGS) epithelium to the surrounding mesenchyme plays a critical role in regulating ductal formation and growth during prostate development. The primary cilium, a feature of most interphase vertebrate cell types, serves as a required localization domain for Hh signaling transducing proteins.ResultsImmunostaining revealed the presence of primary cilia in mesenchymal cells of the developing prostate. Cell-based assays of a urongenital sinus mesenchymal cell line (UGSM-2) revealed that proliferation-limiting (serum starvation and/or confluence) growth conditions promoted cilia formation and correlated with pathway activation associated with accumulation of Smoothened in primary cilia. The prostate cancer cell lines PC-3, LNCaP, and 22RV1, previously shown to lack demonstrable autocrine Hh signaling capacity, did not exhibit primary cilia even under proliferation-limiting growth conditions.ConclusionWe conclude that paracrine Hedgehog signaling activity in the prostate is associated with the presence of primary cilia on stromal cells but that a role in autocrine Hh signaling remains speculative.


Differentiation | 2010

Exploration of Shh and BMP paracrine signaling in a prostate cancer xenograft

Aubie Shaw; Jerry J. Gipp; Wade Bushman

Stromal-epithelial signaling is a critical regulator of normal prostate development and has been speculated to play an equally important role in the development and progression of prostate cancer. Sonic hedgehog (Shh) and bone morphogenetic proteins (BMP-4, BMP-7), expressed by the urogenital sinus epithelium and mesenchyme, exert reciprocal and coordinate effects on outgrowth of nascent prostate ducts. Over-expression of Shh in the LNCaP xenograft was shown previously to accelerate tumor growth by a paracrine mechanism. A survey of BMP regulators expressed in the developing prostate revealed increased Noggin and BMP-7 mRNA in the stromal component of Shh over-expressing xenografts. In vitro studies demonstrated that treatment of LNCaP cells with BMP-4 and BMP-s7 induced Id-1 expression and inhibited tumor cell proliferation. The activity of BMP-4 was abrogated by co-addition of Noggin; the activity of BMP-7 was not. Quantitative analysis of BMP signaling revealed ambivalent results: decreased tumor cell expression of the BMP response gene Id-1 but increased staining for phospho-SMAD 1,5, 8. To directly test whether increased xenograft tumor growth could be explained by Noggin-mediated blockade of BMP-2/4 effects on tumor cell proliferation, we generated LNCaP xenografts containing stromal cells over-expressing Noggin. Tumor cells in these xenografts exhibited decreased Id-1 and reduced SMAD phosphorylation, but tumor growth was not altered. We conclude that tumor cell Shh expression can induce significant changes in expression of BMP ligands and inhibitors in the stromal microenvironment but that acceleration of LNCaP xenograft tumor growth by Shh over-expression cannot be attributed solely to increased Noggin expression in the tumor stroma.


Cancer Microenvironment | 2011

Microdialysis Combined with Proteomics for Protein Identification in Breast Tumor Microenvironment In Vivo

Baogang J Xu; Wenwei Yan; Bojana Jovanovic; Aubie Shaw; Qi A. An; Jimmy K. Eng; Anna Chytil; Andrew J. Link; Harold L. Moses

Tumor microenvironment constitutes a reservoir for proteins released from tumor cells and the host, which can contribute significantly to tumor growth and invasion. This study aims to apply a method of combining in vivo microdialysis and proteomics to identify proteins in mammary tumor interstitial fluids, a major component of tumor microenvironment. In vivo microdialysis was performed in polyomavirus middle T antigen (PyVmT) transgenic mouse mammary tumors and age-matched control wild-type mammary glands. Over four hundred proteins were identified from the microdialysis perfusates, using the Multidimensional Protein Identification Technology. Osteopontin (OPN) is one of the proteins overexpressed in breast tumor perfusates, as confirmed with immunoassays. OPN was also found to be present in tumor-associated stroma in both PyVmT and human breast tumors, using immunohistochemistry. Specifically, fibroblasts were further shown to express OPN at both mRNA and protein levels. In vitro assays showed that OPN can stimulate PyVmT breast carcinoma cell proliferation and migration. Finally, the expression of OPN was significantly higher in the peripheral blood of mice bearing breast tumors, compared to wild-type mice. Overall, microdialysis combined with proteomics is a unique technique for identifying proteins in a tumor microenvironment in vivo. Mammary fibroblasts can secrete OPN, and its overexpression in mammary tumor microenvironment may contribute significantly to mammary tumor progression.


PLOS ONE | 2015

TGFβ Signaling in Myeloid Cells Regulates Mammary Carcinoma Cell Invasion through Fibroblast Interactions

Aubie Shaw; Michael W. Pickup; Anna Chytil; Mary Aakre; Philip Owens; Harold L. Moses; Sergey V. Novitskiy

Metastasis is the most devastating aspect of cancer, however we know very little about the mechanisms of local invasion, the earliest step of metastasis. During tumor growth CD11b+Gr1+ cells, known also as MDSCs, have been shown to promote tumor progression by a wide spectrum of effects that suppress the anti-tumor immune response. In addition to immunosuppression, CD11b+Gr1+ cells promote metastasis by mechanisms that are currently unknown. CD11b+Gr1+ cells localize near fibroblasts, which remodel the ECM and leave tracks for collective cell migration of carcinoma cells. In this study we discovered that CD11b+Gr1+ cells promote invasion of mammary carcinoma cells by increasing fibroblast migration. This effect was directed by secreted factors derived from CD11b+Gr1+ cells. We have identified several CD11b+Gr1+ cell secreted proteins that activate fibroblast migration, including CXCL11, CXCL15, FGF2, IGF-I, IL1Ra, Resistin, and Shh. The combination of CXCL11 and FGF2 had the strongest effect on fibroblast migration that is associated with Akt1 and ERK1/2 phosphorylation. Analysis of subsets of CD11b+Gr1+ cells identified that CD11b+Ly6ChighLy6Glow cells increase fibroblast migration more than other myeloid cell populations. Additionally, tumor-derived CD11b+Gr1+ cells promote fibroblast migration more than splenic CD11b+Gr1+ cells of tumor-bearing mice. While TGFβ signaling in fibroblasts does not regulate their migration toward CD11b+Gr1+ cells, however deletion of TGFβ receptor II on CD11b+Gr1+ cells downregulates CXCL11, Shh, IGF1 and FGF2 resulting in reduced fibroblast migration. These studies show that TGFβ signaling in CD11b+Gr1+ cells promotes fibroblast directed carcinoma invasion and suggests that perivascular CD11b+Ly6ChighLy6Glow cells may be the stimulus for localized invasion leading to metastasis.


Differentiation | 2008

Prostate stromal and urogenital sinus mesenchymal cell lines for investigations of stromal–epithelial interactions

Aubie Shaw; Steven Attia; Wade Bushman

Bidirectional signaling between the urogenital sinus epithelium and mesenchyme is an essential element of prostate development that regulates ductal morphogenesis, growth, and differentiation. Comparable interactions between the epithelium and stroma in the adult prostate appear to regulate normal growth homeostasis. Alterations in the stromal-epithelial dialogue that recapitulate features of the mesenchymal-epithelial interactions of development may play a critical role in the development of benign prostatic hyperplasia and in the progression of prostate cancer. For this reason, the mesenchymal-epithelial interactions of development are of considerable interest. In this review, we provide an overview of the mesenchymal contribution to rodent prostate development with an emphasis on the stage just before ductal budding (embryonic day 16; E16) and describe the isolation, characterization and utility of a newly established E16 urogenital sinus mesenchymal cell line.


mSphere | 2016

Mitochondrial Gene Expression Is Responsive to Starvation Stress and Developmental Transition in Trypanosoma cruzi.

Aubie Shaw; Murat C. Kalem; Sara L. Zimmer

Chagas disease is caused by insect-transmitted Trypanosoma cruzi. Halting T. cruzi’s life cycle in one of its various human and insect life stages would effectively stop the parasite’s infection cycle. T. cruzi is exposed to a variety of environmental conditions in its different life stages, and gene expression must be remodeled to survive these changes. In this work, we look at the impact that one of these changes, nutrient depletion, has on the expression of the 20 gene products encoded in the mitochondrial genome that is neglected by whole-genome studies. We show increases in mitochondrial RNA abundances in starved insect-stage cells, under two conditions in which transition to the infectious stage occurs or does not. This report is the first to show that T. cruzi mitochondrial gene expression is sensitive to environmental perturbations, consistent with mitochondrial gene expression regulatory pathways being potential antiparasitic targets. ABSTRACT Trypanosoma cruzi parasites causing Chagas disease are passed between mammals by the triatomine bug vector. Within the insect, T. cruzi epimastigote-stage cells replicate and progress through the increasingly nutrient-restricted digestive tract, differentiating into infectious, nonreplicative metacyclic trypomastigotes. Thus, we evaluated how nutrient perturbations or metacyclogenesis affects mitochondrial gene expression in different insect life cycle stages. We compared mitochondrial RNA abundances in cultures containing fed, replicating epimastigotes, differentiating cultures containing both starved epimastigotes and metacyclic trypomastigotes and epimastigote starvation cultures. We observed increases in mitochondrial rRNAs and some mRNAs in differentiating cultures. These increases predominated only for the edited CYb mRNA in cultures enriched for metacyclic trypomastigotes. For the other transcripts, abundance increases were linked to starvation and were strongest in culture fractions with a high population of starved epimastigotes. We show that loss of both glucose and amino acids results in rapid increases in RNA abundances that are quickly reduced when these nutrients are returned. Furthermore, the individual RNAs exhibit distinct temporal abundance patterns, suggestive of multiple mechanisms regulating individual transcript abundance. Finally, increases in mitochondrial respiratory complex subunit mRNA abundances were not matched by increases in abundances of nucleus-encoded subunit mRNAs, nor were there statistically significant increases in protein levels of three nucleus-encoded subunits tested. These results show that, similarly to that in T. brucei, the mitochondrial genome in T. cruzi has the potential to alter gene expression in response to environmental or developmental stimuli but for an as-yet-unknown purpose. IMPORTANCE Chagas disease is caused by insect-transmitted Trypanosoma cruzi. Halting T. cruzi’s life cycle in one of its various human and insect life stages would effectively stop the parasite’s infection cycle. T. cruzi is exposed to a variety of environmental conditions in its different life stages, and gene expression must be remodeled to survive these changes. In this work, we look at the impact that one of these changes, nutrient depletion, has on the expression of the 20 gene products encoded in the mitochondrial genome that is neglected by whole-genome studies. We show increases in mitochondrial RNA abundances in starved insect-stage cells, under two conditions in which transition to the infectious stage occurs or does not. This report is the first to show that T. cruzi mitochondrial gene expression is sensitive to environmental perturbations, consistent with mitochondrial gene expression regulatory pathways being potential antiparasitic targets.


Cancer Research | 2012

Abstract 1500: Bone morphogenetic proteins stimulate mammary fibroblasts to promote mammary tumorigenesis

Philip Owens; Hannah Polikowsky; Michael W. Pickup; Lauren A. Matise; Agnes Gorska; Aubie Shaw; Sergey V. Novitskiy; Mary Aakre; Charles C. Hong; Harold L. Moses

Proceedings: AACR 103rd Annual Meeting 2012‐‐ Mar 31‐Apr 4, 2012; Chicago, IL Bone Morphogenetic Proteins (BMPs) are secreted cytokines/growth factors belonging to the Transforming Growth Factor ≤ (TGFβ) superfamily. BMPs have recently been shown to be overexpressed in human breast cancers, however loss of BMP signaling in mammary carcinomas has also been shown to accelerate metastases. Stimulation of dermal fibroblasts with BMP4 can enhance pro-tumorigenic factors uniquely from the epidermal response. Additionally, treatment of carcinoma-associated fibroblasts (CAFs) derived from a mouse prostate carcinoma with BMP have been reported to stimulate tumor-associated angiogenesis. We sought to determine the effect of BMP treatment on mammary fibroblasts and determine their response during mammary tumor progression. We first identified secreted pro-inflammatory cytokines and matrix-metalloproteinases (MMPs) upregulated in response to BMP4 treatment. We found that fibroblasts stimulated with BMP4 could enhance tumor invasion, which was inhibited by a BMP receptor kinase antagonist. We next demonstrated that BMP signaling was specifically absent in the stroma of human ductal and lobular carcinoma in situ (DCIS & LCIS). Yet after progression to invasion, breast tumors of many distinct subtypes contained a stroma active for BMP signaling. We further extended these observations with human normal mammary fibroblasts and compared them to human fibroblasts from breast cancer and found that BMP was capable of inducing MMP3 and IL-6 secretion in normal fibroblasts. However carcinoma associated fibroblasts had constitutively elevated levels of MMP3 and IL-6 that corresponded to enhanced BMP signaling in addition to loss of secreted BMP antagonists. These experiments demonstrate that BMP may play important tumor promoting functions within the tumor microenvironment. Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 103rd Annual Meeting of the American Association for Cancer Research; 2012 Mar 31-Apr 4; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2012;72(8 Suppl):Abstract nr 1500. doi:1538-7445.AM2012-1500

Collaboration


Dive into the Aubie Shaw's collaboration.

Top Co-Authors

Avatar

Wade Bushman

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Jerry J. Gipp

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert J. Lipinski

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge