Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Audrey Arnal is active.

Publication


Featured researches published by Audrey Arnal.


Critical Reviews in Microbiology | 2015

Laridae: A neglected reservoir that could play a major role in avian influenza virus epidemiological dynamics

Audrey Arnal; Marion Vittecoq; Jessica Pearce-Duvet; Michel Gauthier-Clerc; Thierry Boulinier; Elsa Jourdain

Abstract Avian influenza viruses (AIVs) are of great concern worldwide due to their economic impact and the threat they represent to human health. As wild birds are the natural reservoirs of AIVs, understanding AIV dynamics in different avian taxa is essential for deciphering the epidemiological links between wildlife, poultry and humans. To date, only the Anatidae (ducks, geese and swans) have been widely studied. Here, we aim to shed light on the current state of knowledge on AIVs in Laridae (gulls, terns and kittiwakes) versus that in Anatidae by setting forth four fundamental questions: how, when, where and to which host species are AIVs transmitted? First, we describe ecological differences between Laridae and Anatidae and discuss how they may explain observed contrasts in preferential transmission routes and the evolution of specific AIV subtypes. Second, we highlight the dissimilarities in the temporal patterns of AIV shedding between Laridae and Anatidae and address the role that immunity likely plays in shaping these patterns. Third, we underscore that Laridae may be key in promoting intercontinental exchanges of AIVs. Finally, we emphasize the crucial epidemiological position that Laridae occupy between wildlife, domestic birds and humans.


Journal of Applied Ecology | 2016

Antimicrobial resistance in wildlife

Marion Vittecoq; Sylvain Godreuil; Franck Prugnolle; Patrick Durand; Lionel Brazier; Nicolas Renaud; Audrey Arnal; Salim Aberkane; Hélène Jean-Pierre; Michel Gauthier-Clerc; Frédéric Thomas; François Renaud

1. The spread of antimicrobial resistance is of major concern for human health and leads to growing economic costs. While it is increasingly hypothesized that wildlife could play an important role in antimicrobial-resistant bacteria dynamics, empirical data remain scarce. 2. The present work builds on a systematic review of the available data in order to highlight the main information we have and to suggest research pathways that should be followed if we aim to fill the gaps in our current knowledge. 3. To achieve this goal, we address four questions: (i) Which resistant bacteria are the most frequently observed in wildlife? (ii) How are resistant bacteria exchanged between wildlife and the other hosts involved? (iii) In which habitats are those resistant bacteria found? (iv) Are resistances associated with certain ecological traits of the host? 4. Synthesis and applications. We highlight the strong link existing between the impact of human activities on natural habitats and the carriage of antimicrobial-resistant bacteria by wildlife. Furthermore, we underline that omnivorous, anthropophilic and carnivorous species are at high risk of being carriers and potentially spreaders of antimicrobial-resistant bacteria. Identifying among those groups key sentinel species may be of particular interest to implement ecosystem contamination surveillance. Finally, we discuss possible exchange routes for antimicrobial-resistant bacteria between humans and wildlife. Considering that water is of major importance in those exchanges, a critical way to control antimicrobial resistance spread may be to limit aquatic environment contamination by antimicrobial-resistant bacteria and antibiotics.


Evolutionary Applications | 2015

Evolutionary perspective of cancer: myth, metaphors, and reality

Audrey Arnal; Beata Ujvari; Bernard J. Crespi; Robert A. Gatenby; Tazzio Tissot; Marion Vittecoq; Paul W. Ewald; Andreu Casali; Hugo Ducasse; Camille Jacqueline; Dorothée Missé; François Renaud; Benjamin Roche; Frédéric Thomas

The evolutionary perspective of cancer (which origins and dynamics result from evolutionary processes) has gained significant international recognition over the past decade and generated a wave of enthusiasm among researchers. In this context, several authors proposed that insights into evolutionary and adaptation dynamics of cancers can be gained by studying the evolutionary strategies of organisms. Although this reasoning is fundamentally correct, in our opinion, it contains a potential risk of excessive adaptationism, potentially leading to the suggestion of complex adaptations that are unlikely to evolve among cancerous cells. For example, the ability of recognizing related conspecifics and adjusting accordingly behaviors as in certain free‐living species appears unlikely in cancer. Indeed, despite their rapid evolutionary rate, malignant cells are under selective pressures for their altered lifestyle for only few decades. In addition, even though cancer cells can theoretically display highly sophisticated adaptive responses, it would be crucial to determine the frequency of their occurrence in patients with cancer, before therapeutic applications can be considered. Scientists who try to explain oncogenesis will need in the future to critically evaluate the metaphorical comparison of selective processes affecting cancerous cells with those affecting organisms. This approach seems essential for the applications of evolutionary biology to understand the origin of cancers, with prophylactic and therapeutic applications.


Vector-borne and Zoonotic Diseases | 2013

Recent Circulation of West Nile Virus and Potentially Other Closely Related Flaviviruses in Southern France

Marion Vittecoq; Sylvie Lecollinet; Elsa Jourdain; Frédéric Thomas; Thomas Blanchon; Audrey Arnal; Steeve Lowenski; Michel Gauthier-Clerc

In recent years, the number of West Nile virus (WNV) cases reported in horses and humans has increased dramatically throughout the Mediterranean basin. Furthermore, the emergence of Usutu virus (USUV) in Austria in 2001, and its subsequent expansion to Hungary, Spain, Italy, Switzerland, the United Kingdom, and Germany, has given added cause for concern regarding the impact of the spread of flaviviruses on human and animal health in western Europe. Despite frequent detection of WNV and USUV cases in neighboring countries, no case of WNV has been detected in France since 2006 and USUV has never been reported. However, recent investigations focused on detecting the circulation of flaviviruses in France are lacking. We investigated the circulation of WNV and USUV viruses in wild birds in southern France on the basis of a serological survey conducted on a sentinel species, the magpie (Pica pica), in the Camargue area from November, 2009, to December, 2010. We detected WNV-neutralizing antibodies at a high titer (160) in a second-year bird showing recent exposure to WNV, although no WNV case has been detected in humans or in horses since 2004 in the Camargue. In addition, we observed low titers (10 or 20) of USUV-specific antibodies in six magpies, two of which were also seropositive for WNV. Such low titers do not give grounds for concluding that these birds had been exposed to USUV; cross-reactions at low titers may occur between antigenically closely related flaviviruses. But these results urge for further investigations into the circulation of flaviviruses in southern France. They also emphasize the necessity of undertaking epidemiological studies on a long-term basis, rather than over short periods following public health crises, to gain insight into viral dynamics within natural reservoirs.


Parasitology | 2016

Cancer and life-history traits: lessons from host-parasite interactions

Beata Ujvari; Christa Beckmann; Peter A. Biro; Audrey Arnal; Aurélie Tasiemski; François Massol; Michel Salzet; Frederic Mery; Céline Boidin-Wichlacz; Dorothée Missé; François Renaud; Marion Vittecoq; Tazzio Tissot; Benjamin Roche; Robert Poulin; Frédéric Thomas

Despite important differences between infectious diseases and cancers, tumour development (neoplasia) can nonetheless be closely compared to infectious disease because of the similarity of their effects on the body. On this basis, we predict that many of the life-history (LH) responses observed in the context of host-parasite interactions should also be relevant in the context of cancer. Parasites are thought to affect LH traits of their hosts because of strong selective pressures like direct and indirect mortality effects favouring, for example, early maturation and reproduction. Cancer can similarly also affect LH traits by imposing direct costs and/or indirectly by triggering plastic adjustments and evolutionary responses. Here, we discuss how and why a LH focus is a potentially productive but under-exploited research direction for cancer research, by focusing our attention on similarities between infectious disease and cancer with respect to their effects on LH traits and their evolution. We raise the possibility that LH adjustments can occur in response to cancer via maternal/paternal effects and that these changes can be heritable to (adaptively) modify the LH traits of their offspring. We conclude that LH adjustments can potentially influence the transgenerational persistence of inherited oncogenic mutations in populations.


PLOS ONE | 2012

Maternal antibody transmission in relation to mother fluctuating asymmetry in a long-lived colonial seabird: the yellow-legged gull Larus michahellis.

Abdessalem Hammouda; Slaheddine Selmi; Jessica Pearce-Duvet; Mohamed Ali Chokri; Audrey Arnal; Michel Gauthier-Clerc; Thierry Boulinier

Female birds transfer antibodies to their offspring via the egg yolk, thus possibly providing passive immunity against infectious diseases to which hatchlings may be exposed, thereby affecting their fitness. It is nonetheless unclear whether the amount of maternal antibodies transmitted into egg yolks varies with female quality and egg laying order. In this paper, we investigated the transfer of maternal antibodies against type A influenza viruses (anti-AIV antibodies) by a long-lived colonial seabird, the yellow-legged gull (Larus michahellis), in relation to fluctuating asymmetry in females, i.e. the random deviation from perfect symmetry in bilaterally symmetric morphological and anatomical traits. In particular, we tested whether females with greater asymmetry transmitted fewer antibodies to their eggs, and whether within-clutch variation in yolk antibodies varied according to the maternal level of fluctuating asymmetry. We found that asymmetric females were in worse physical condition, produced fewer antibodies, and transmitted lower amounts of antibodies to their eggs. We also found that, within a given clutch, yolk antibody level decreased with egg laying order, but this laying order effect was more pronounced in clutches laid by the more asymmetric females. Overall, our results support the hypothesis that maternal quality interacts with egg laying order in determining the amount of maternal antibodies transmitted to the yolks. They also highlight the usefulness of fluctuating asymmetry as a sensitive indicator of female quality and immunocompetence in birds.


Vector-borne and Zoonotic Diseases | 2011

Prevalence of Influenza A Antibodies in Yellow-Legged Gull (Larus michahellis) Eggs and Adults in Southern Tunisia

Abdessalem Hammouda; Jessica Pearce-Duvet; Mohamed Ali Chokri; Audrey Arnal; Michel Gauthier-Clerc; Thierry Boulinier; Slaheddine Selmi

Investigating the prevalence of anti-influenza A viruses (AIV) antibodies in wild birds can provide important information for the understanding of bird exposure to AIV, as well as for prevention purposes. We investigated AIV exposure in nature by measuring the prevalence of anti-AIV antibodies in the nests and adults of an abundant and anthropophilic waterbird species common around the Mediterranean sea, the yellow-legged gull (Larus michahellis). Sampling took place in two colonies located in the gulf of Gabès in southern Tunisia: Sfax and Djerba. Antibodies were detected in the two sites, with higher prevalence in adults, eggs, and nests at Sfax than Djerba. Across both colonies, clutches that were laid later in the season, and, thus, more likely by younger parents, showed lower prevalence. Using patch occupancy modeling applied to egg clutches, we found that it is unnecessary to sample all the eggs in a given nest; nest status (antibody positive or negative) can be reliably estimated from a single egg. Differences in the density of birds, notably Larids, between the two sites may explain the observed differences in prevalence. The higher concentration of Larids in the Sfax colony could favor the transmission of AIV to yellow-legged gulls. This study highlights the importance of further developing ecological-based approaches to the factors determining the circulation of infectious agents in species such as the yellow-legged gull, which exist at the interface between diverse biological communities and human activities.


Evolutionary Applications | 2015

Cancer: an emergent property of disturbed resource‐rich environments? Ecology meets personalized medicine

Hugo Ducasse; Audrey Arnal; Marion Vittecoq; Simon P. Daoust; Beata Ujvari; Camille Jacqueline; Tazzio Tissot; Paul W. Ewald; Robert A. Gatenby; Kayla C. King; François Bonhomme; Jacques Brodeur; François Renaud; Eric Solary; Benjamin Roche; Frédéric Thomas

For an increasing number of biologists, cancer is viewed as a dynamic system governed by evolutionary and ecological principles. Throughout most of human history, cancer was an uncommon cause of death and it is generally accepted that common components of modern culture, including increased physiological stresses and caloric intake, favor cancer development. However, the precise mechanisms for this linkage are not well understood. Here, we examine the roles of ecological and physiological disturbances and resource availability on the emergence of cancer in multicellular organisms. We argue that proliferation of ‘profiteering phenotypes’ is often an emergent property of disturbed, resource‐rich environments at all scales of biological organization. We review the evidence for this phenomenon, explore it within the context of malignancy, and discuss how this ecological framework may offer a theoretical background for novel strategies of cancer prevention. This work provides a compelling argument that the traditional separation between medicine and evolutionary ecology remains a fundamental limitation that needs to be overcome if complex processes, such as oncogenesis, are to be completely understood.


Ecology and Evolution | 2017

Cancer brings forward oviposition in the fly Drosophila melanogaster

Audrey Arnal; Camille Jacqueline; Beata Ujvari; Lucas Léger; Celine Moreno; Dominique Faugere; Aurélie Tasiemski; Céline Boidin-Wichlacz; Dorothée Missé; François Renaud; Jacques Montagne; Andreu Casali; Benjamin Roche; Frederic Mery; Frédéric Thomas

Abstract Hosts often accelerate their reproductive effort in response to a parasitic infection, especially when their chances of future reproduction decrease with time from the onset of the infection. Because malignancies usually reduce survival, and hence potentially the fitness, it is expected that hosts with early cancer could have evolved to adjust their life‐history traits to maximize their immediate reproductive effort. Despite the potential importance of these plastic responses, little attention has been devoted to explore how cancers influence animal reproduction. Here, we use an experimental setup, a colony of genetically modified flies Drosophila melanogaster which develop colorectal cancer in the anterior gut, to show the role of cancer in altering life‐history traits. Specifically, we tested whether females adapt their reproductive strategy in response to harboring cancer. We found that flies with cancer reached the peak period of oviposition significantly earlier (i.e., 2 days) than healthy ones, while no difference in the length and extent of the fecundity peak was observed between the two groups of flies. Such compensatory responses to overcome the fitness‐limiting effect of cancer could explain the persistence of inherited cancer‐causing mutant alleles in the wild.


BioEssays | 2016

Host manipulation by cancer cells: Expectations, facts, and therapeutic implications

Tazzio Tissot; Audrey Arnal; Camille Jacqueline; Robert Poulin; Thierry Lefèvre; Frederic Mery; François Renaud; Benjamin Roche; François Massol; Michel Salzet; Paul W. Ewald; Aurélie Tasiemski; Beata Ujvari; Frédéric Thomas

Similar to parasites, cancer cells depend on their hosts for sustenance, proliferation and reproduction, exploiting the hosts for energy and resources, and thereby impairing their health and fitness. Because of this lifestyle similarity, it is predicted that cancer cells could, like numerous parasitic organisms, evolve the capacity to manipulate the phenotype of their hosts to increase their own fitness. We claim that the extent of this phenomenon and its therapeutic implications are, however, underappreciated. Here, we review and discuss what can be regarded as cases of host manipulation in the context of cancer development and progression. We elaborate on how acknowledging the applicability of these principles can offer novel therapeutic and preventive strategies. The manipulation of host phenotype by cancer cells is one more reason to adopt a Darwinian approach in cancer research.

Collaboration


Dive into the Audrey Arnal's collaboration.

Top Co-Authors

Avatar

Marion Vittecoq

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

François Renaud

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Frédéric Thomas

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Benjamin Roche

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Dorothée Missé

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Tazzio Tissot

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Camille Jacqueline

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Hugo Ducasse

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Jessica Pearce-Duvet

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge