Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Audrey C. Papp is active.

Publication


Featured researches published by Audrey C. Papp.


Journal of Biological Chemistry | 2005

Allelic Expression Imbalance of Human mu Opioid Receptor (OPRM1) Caused by Variant A118G

Ying Zhang; Danxin Wang; Andrew D. Johnson; Audrey C. Papp; Wolfgang Sadee

As a primary target for opioid drugs and peptides, the mu opioid receptor (OPRM1) plays a key role in pain perception and addiction. Genetic variants of OPRM1 have been implicated in predisposition to drug addiction, in particular the single nucleotide polymorphism A118G, leading to an N40D substitution, with an allele frequency of 10–32%, and uncertain functions. We have measured allele-specific mRNA expression of OPRM1 in human autopsy brain tissues, using A118G as a marker. In 8 heterozygous samples measured, the A118 mRNA allele was 1.5–2.5-fold more abundant than the G118 allele. Transfection into Chinese hamster ovary cells of a cDNA representing only the coding region of OPRM1, carrying adenosine, guanosine, cytidine, and thymidine in position 118, resulted in 1.5-fold lower mRNA levels only for OPRM1-G118, and more than 10-fold lower OPRM1 protein levels, measured by Western blotting and receptor binding assay. After transfection and inhibition of transcription with actinomycin D, analysis of mRNA turnover failed to reveal differences in mRNA stability between A118 and G118 alleles, indicating a defect in transcription or mRNA maturation. These results indicate that OPRM1-G118 is a functional variant with deleterious effects on both mRNA and protein yield. Clarifying the functional relevance of polymorphisms associated with susceptibility to a complex disorder such as drug addiction provides a foundation for clinical association studies.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Polymorphisms in human dopamine D2 receptor gene affect gene expression, splicing, and neuronal activity during working memory

Ying Zhang; Alessandro Bertolino; Leonardo Fazio; Giuseppe Blasi; Antonio Rampino; Raffaella Romano; Mei Ling T Lee; Tao Xiao; Audrey C. Papp; Danxin Wang; Wolfgang Sadee

Subcortical dopamine D2 receptor (DRD2) signaling is implicated in cognitive processes and brain disorders, but the effect of DRD2 variants remains ambiguous. We measured allelic mRNA expression in postmortem human striatum and prefrontal cortex and then performed single nucleotide polymorphism (SNP) scans of the DRD2 locus. A previously uncharacterized promoter SNP (rs12364283) located in a conserved suppressor region was associated with enhanced DRD2 expression, whereas previously studied DRD2 variants failed to affect expression. Moreover, two frequent intronic SNPs (rs2283265 and rs1076560) decreased expression of DRD2 short splice variant (expressed mainly presynaptically) relative to DRD2 long (postsynaptic), a finding reproduced in vitro by using minigene constructs. Being in strong linkage disequilibrium with each other, both intronic SNPs (but not rs12364283) were also associated with greater activity of striatum and prefrontal cortex measured with fMRI during working memory and with reduced performance in working memory and attentional control tasks in healthy humans. Our results identify regulatory DRD2 polymorphisms that modify mRNA expression and splicing and working memory pathways.


Cancer Research | 2004

Membrane Transporters and Channels: Role of the Transportome in Cancer Chemosensitivity and Chemoresistance

Ying Huang; Pascale Anderle; Kimberly J. Bussey; Catalin Barbacioru; Uma Shankavaram; Zunyan Dai; William C. Reinhold; Audrey C. Papp; John N. Weinstein; Wolfgang Sadee

Membrane transporters and channels (collectively the transportome) govern cellular influx and efflux of ions, nutrients, and drugs. We used oligonucleotide arrays to analyze gene expression of the transportome in 60 human cancer cell lines used by the National Cancer Institute for drug screening. Correlating gene expression with the potencies of 119 standard anticancer drugs identified known drug-transporter interactions and suggested novel ones. Folate, nucleoside, and amino acid transporters positively correlated with chemosensitivity to their respective drug substrates. We validated the positive correlation between SLC29A1 (nucleoside transporter ENT1) expression and potency of nucleoside analogues, azacytidine and inosine-glycodialdehyde. Application of an inhibitor of SLC29A1, nitrobenzylmercaptopurine ribonucleoside, significantly reduced the potency of these two drugs, indicating that SLC29A1 plays a role in cellular uptake. Three ABC efflux transporters (ABCB1, ABCC3, and ABCB5) showed significant negative correlations with multiple drugs, suggesting a mechanism of drug resistance. ABCB1 expression correlated negatively with potencies of 19 known ABCB1 substrates and with Baker’s antifol and geldanamycin. Use of RNA interference reduced ABCB1 mRNA levels and concomitantly increased sensitivity to these two drugs, as expected for ABCB1 substrates. Similarly, specific silencing of ABCB5 by small interfering RNA increased sensitivity to several drugs in melanoma cells, implicating ABCB5 as a novel chemoresistance factor. Ion exchangers, ion channels, and subunits of proton and sodium pumps variably correlated with drug potency. This study identifies numerous potential drug-transporter relationships and supports a prominent role for membrane transport in determining chemosensitivity. Measurement of transporter gene expression may prove useful in predicting anticancer drug response.


Genetics in Medicine | 2002

Molecular analysis of spinal muscular atrophy and modification of the phenotype by SMN2

Matthew D. Mailman; John W. Heinz; Audrey C. Papp; Pamela J. Snyder; Mary S. Sedra; Brunhilde Wirth; Arthur H.M. Burghes; Thomas W. Prior

Purpose: This study describes SMN1 deletion frequency, carrier studies, and the effect of the modifying SMN2 gene on the spinal muscular atrophy (SMA) phenotype. A novel allele-specific intragenic mutation panel increases the sensitivity of SMN1 testing.Methods: From 1995 to 2001, 610 patients were tested for SMN1 deletions and 399 relatives of probands have been tested for carrier status. SMN2 copy number was compared between 52 type I and 90 type III patients, and between type I and type III patients with chimeric SMN genes. A fluorescent allele-specific polymerase chain reaction (PCR) -based strategy detected intragenic mutations in potential compound heterozygotes and was used on 366 patients.Results: Less than half of the patients tested were homozygously deleted for SMN1. A PCR-based panel detected the seven most common intragenic mutations. SMN2 copy number was significantly different between mild and severely affected patients.Conclusions: SMN1 molecular testing is essential for the diagnosis of SMA and allows for accurate carrier testing. Screening for intragenic mutations in SMN1 increases the sensitivity of diagnostic testing. Finally, SMN2 copy number is conclusively shown to ameliorate the phenotype and provide valuable prognostic information.


Brain | 2009

Functional variants of the dopamine receptor D2 gene modulate prefronto-striatal phenotypes in schizophrenia

Alessandro Bertolino; Leonardo Fazio; Grazia Caforio; Giuseppe Blasi; Antonio Rampino; Raffaella Romano; Annabella Di Giorgio; Paolo Taurisano; Audrey C. Papp; Julia Pinsonneault; Danxin Wang; Marcello Nardini; Teresa Popolizio; Wolfgang Sadee

Dopamine D2 receptor signalling is strongly implicated in the aetiology of schizophrenia. We have recently characterized the function of three DRD2 SNPs: rs12364283 in the promoter affecting total D2 mRNA expression; rs2283265 and rs1076560, respectively in introns 5 and 6, shifting mRNA splicing to two functionally distinct isoforms, the short form of D2 (D2S) and the long form (D2L). These two isoforms differentially contribute to dopamine signalling in prefrontal cortex and in striatum. We performed a case-control study to determine association of these variants and of their main haplotypes with several schizophrenia-related phenotypes. We demonstrate that the minor allele in the intronic variants is associated with reduced expression of %D2S of total mRNA in post-mortem prefrontal cortex, and with impaired working memory behavioural performance, both in patients and controls. However, the fMRI results show opposite effects in patients compared with controls: enhanced engagement of prefronto-striatal pathways in controls and reduced activity in patients. Moreover, the promoter variant is also associated with working memory activity in prefrontal cortex and striatum of patients, and less robustly with negative symptoms scores. Main haplotypes formed by the three DRD2 variants showed significant associations with these phenotypes consistent with those of the individual SNPs. Our results indicate that the three functional DRD2 variants modulate schizophrenia phenotypes possibly by modifying D2S/D2L ratios in the context of different total D2 density.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2008

The human zinc transporter SLC39A8 (Zip8) is critical in zinc-mediated cytoprotection in lung epithelia

Beth Y. Besecker; Shengying Bao; Barbara Bohacova; Audrey C. Papp; Wolfgang Sadee; Daren L. Knoell

Zinc is an essential micronutrient and cytoprotectant involved in the host response to inflammatory stress. We tested whether zinc transporters, the critical regulators that maintain intracellular zinc concentrations, play a role in cell survival, particularly in lung epithelia, during inflammation. Initially, mRNA transcripts were quantitatively measured by RT-PCR for all known human zinc transporters, including 14 importers (SLC39A(1-14)) and 10 exporters (SLC30A(1-10)), in primary human lung epithelia obtained from multiple human donors and BEAS-2B cell cultures under baseline and TNF-alpha-stimulated conditions. While many zinc transporters were constitutively expressed, only SLC39A8 (Zip8) mRNA was strongly induced by TNF-alpha. Endogenous Zip8 protein was not routinely detected under baseline conditions. In sharp contrast, TNF-alpha induced the expression of a glycosylated protein that translocated to the plasma membrane and mitochondria. Increased Zip8 expression resulted in an increase in intracellular zinc content and coincided with cell survival in the presence of TNF-alpha. Inhibition of Zip8 expression using a short interfering RNA probe reduced cellular zinc content and impaired mitochondrial function in response to TNF-alpha, resulting in loss of cell viability. These data are the first to characterize human Zip8 and remarkably demonstrate that upregulation of Zip8 is sufficient to protect lung epithelia against TNF-alpha-induced cytotoxicity. We conclude that Zip8 is unique, relative to other Zip proteins, by functioning as an essential zinc importer at the onset of inflammation, thereby facilitating cytoprotection within the lung.


Neuropsychopharmacology | 2011

Intronic Polymorphisms Affecting Alternative Splicing of Human Dopamine D2 Receptor Are Associated with Cocaine Abuse

Robert A. Moyer; Danxin Wang; Audrey C. Papp; Ryan M. Smith; Linda Duque; Deborah C. Mash; Wolfgang Sadee

The dopamine receptor D2 (encoded by DRD2) is implicated in susceptibility to mental disorders and cocaine abuse, but mechanisms responsible for this relationship remain uncertain. DRD2 mRNA exists in two main splice isoforms with distinct functions: D2 long (D2L) and D2 short (D2S, lacking exon 6), expressed mainly postsynaptically and presynaptically, respectively. Two intronic single-nucleotide polymorphisms (SNPs rs2283265 (intron 5) and rs1076560 (intron 6)) in high linkage disequilibrium (LD) with each other have been reported to alter D2S/D2L splicing and several behavioral traits in human subjects, such as memory processing. To assess the role of DRD2 variants in cocaine abuse, we measured levels of D2S and D2L mRNA in human brain autopsy tissues (prefrontal cortex and putamen) obtained from cocaine abusers and controls, and genotyped a panel of DRD2 SNPs (119 abusers and 95 controls). Robust effects of rs2283265 and rs1076560 on reducing formation of D2S relative to D2L were confirmed. The minor alleles of rs2283265/rs1076560 were considerably more frequent in Caucasians (18%) compared with African Americans (7%). Also, in Caucasians, rs2283265/rs1076560 minor alleles were significantly overrepresented in cocaine abusers compared with controls (rs2283265: 25 to 9%, respectively; p=0.001; OR=3.4 (1.7–7.1)). Several SNPs previously implicated in diverse clinical association studies are in high LD with rs2283265/rs1076560 and could have served as surrogate markers. Our results confirm the role of rs2283265/rs1076560 in D2 alternative splicing and support a strong role in susceptibility to cocaine abuse.


Human Molecular Genetics | 1993

Characterization of translational frame exception patients in Duchenne/Becker muscular dystrophy

Alissa V. Winnard; Christopher J. Klein; Daniel D. Coovert; Thomas W. Prior; Audrey C. Papp; Pamela J. Snyder; Dennis E. Bulman; Peter N. Ray; Patricia McAndrew; Wendy M. King; Richard T. Moxley; Arthur H.M. Burghes

The clinical progression of Duchenne muscular dystrophy (DMD) patients with deletions can be predicted in 93% of cases by whether the deletion maintains or disrupts the translational reading frame (frameshift hypothesis). We have identified and studied a number of patients who have deletions that do not conform to the translational frame hypothesis. The most common exception to the frameshift hypothesis is the deletion of exons 3 to 7 which disrupts the translational reading frame. We identified a Becker muscular dystrophy (BMD) patient, an intermediate, and a DMD patient with this deletion. In all three cases, dystrophin was detected and localized to the membrane. One DMD patient with an inframe deletion of exons 4-18 produced no dystrophin. One patient with a mild intermediate phenotype and a deletion of exon 45, which shifts the reading frame, produced no dystrophin. Two patients with large inframe deletions had discordant phenotypes (exons 3-41, DMD; exons 13-48, BMD), but both produced dystrophin that localized to the sarcolemma. The DMD patient, 113, indicates that dystrophin with an intact carboxy terminus can be produced in Duchenne patients at levels equivalent to some Beckers. The dystrophin analysis from these patients, together with patients reported in the literature, indicate that more than one domain can localize dystrophin to the sarcolemma. Lastly, the data shows that although most patients show correlation of clinical severity to molecular data, there are rare patients which do not conform.


Molecular Psychiatry | 2006

Allelic expression of serotonin transporter ( SERT ) mRNA in human pons: lack of correlation with the polymorphism SERTLPR

Jeong-Eun Lim; Audrey C. Papp; Julia K. Pinsonneault; Wolfgang Sadee; David Saffen

An insertion/deletion polymorphism in the SERT linked promoter region (SERTLPR), previously reported to regulate mRNA expression in vitro, has been associated with mental disorders and response to psychotropic drugs. Contradictory evidence, however, has raised questions about the role of SERTLPR in regulating mRNA expression in vivo. We have used analysis of allelic expression imbalance (AEI) of SERT mRNA to assess quantitatively the contribution of SERTLPR to mRNA expression in human post-mortem pons tissue sections containing serotonergic neurons of the dorsal and median raphe nuclei. Any difference in the expression of one allele over the other indicates the presence of cis-acting elements that differentially affect transcription and/or mRNA processing and turnover. Using a marker SNP in the 3′ untranslated region of SERT mRNA, statistically significant differences in allelic mRNA levels were detected in nine out of 29 samples heterozygous for the marker SNP. While the allelic expression differences were relatively small (15–25%), they could nevertheless be physiologically relevant. Although previous results had suggested that the long form of SERTLPR yields higher mRNA levels than the short form, we did not observe a correlation between SERTLPR and allelic expression ratios. Also in contrast to previous results, we found no correlation between SERTLPR and allelic expression ratios or SERT mRNA levels in B-lymphocytes. This study demonstrates that regulation of SERT mRNA is independent of SERTLPR, but could be associated with polymorphisms in partial linkage disequilibrium with SERTLPR.


The Journal of Neuroscience | 2009

Genetically determined interaction between the dopamine transporter and the D2 receptor on prefronto-striatal activity and volume in humans

Alessandro Bertolino; Leonardo Fazio; Annabella Di Giorgio; Giuseppe Blasi; Raffaella Romano; Paolo Taurisano; Grazia Caforio; Lorenzo Sinibaldi; Gianluca Ursini; Teresa Popolizio; Emanuele Tirotta; Audrey C. Papp; Bruno Dallapiccola; Emiliana Borrelli; Wolfgang Sadee

Dopamine modulation of neuronal activity during memory tasks identifies a nonlinear inverted-U shaped function. Both the dopamine transporter (DAT) and dopamine D2 receptors (encoded by DRD2) critically regulate dopamine signaling in the striatum and in prefrontal cortex during memory. Moreover, in vitro studies have demonstrated that DAT and D2 proteins reciprocally regulate each other presynaptically. Therefore, we have evaluated the genetic interaction between a DRD2 polymorphism (rs1076560) causing reduced presynaptic D2 receptor expression and the DAT 3′-VNTR variant (affecting DAT expression) in a large sample of healthy subjects undergoing blood oxygenation level-dependent (BOLD)-functional magnetic resonance imaging (MRI) during memory tasks and structural MRI. Results indicated a significant DRD2/DAT interaction in prefrontal cortex and striatum BOLD activity during both working memory and encoding of recognition memory. The differential effect on BOLD activity of the DAT variant was mostly manifest in the context of the DRD2 allele associated with lower presynaptic expression. Similar results were also evident for gray matter volume in caudate. These interactions describe a nonlinear relationship between compound genotypes and brain activity or gray matter volume. Complementary data from striatal protein extracts from wild-type and D2 knock-out animals (D2R−/−) indicate that DAT and D2 proteins interact in vivo. Together, our results demonstrate that the interaction between genetic variants in DRD2 and DAT critically modulates the nonlinear relationship between dopamine and neuronal activity during memory processing.

Collaboration


Dive into the Audrey C. Papp's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Danxin Wang

Casa Sollievo della Sofferenza

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amy Webb

Ohio State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge