Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wolfgang Sadee is active.

Publication


Featured researches published by Wolfgang Sadee.


Cancer Research | 2005

ABCB5-Mediated Doxorubicin Transport and Chemoresistance in Human Malignant Melanoma

Natasha Y. Frank; Armen Margaryan; Ying Huang; Tobias Schatton; Ana Maria Waaga-Gasser; Martin Gasser; Mohamed H. Sayegh; Wolfgang Sadee; Markus H. Frank

Enhanced drug efflux mediated by ABCB1 P-glycoprotein and related ATP-binding cassette transporters is one of several mechanisms of multidrug resistance thought to impair chemotherapeutic success in human cancers. In malignant melanoma, its potential contribution to chemoresistance is uncertain. Here, we show that ABCB5, which functions as a determinant of membrane potential and regulator of cell fusion in physiologic skin progenitor cells, is expressed in clinical malignant melanoma tumors and preferentially marks a subset of hyperpolarized, CD133+ stem cell phenotype-expressing tumor cells in malignant melanoma cultures and clinical melanomas. We found that ABCB5 blockade significantly reversed resistance of G3361 melanoma cells to doxorubicin, an agent to which clinical melanomas have been found refractory, resulting in a 43% reduction in the LD50 from 4 to 2.3 micromol/L doxorubicin (P < 0.05). Our results identified ABCB5-mediated doxorubicin efflux transport as the underlying mechanism of resistance, because ABCB5 blockade significantly enhanced intracellular drug accumulation. Consistent with this novel ABCB5 function and mechanism in doxorubicin resistance, gene expression levels of the transporter across a panel of human cancer cell lines used by the National Cancer Institute for drug screening correlated significantly with tumor resistance to doxorubicin (r = 0.44; P = 0.016). Our results identify ABCB5 as a novel drug transporter and chemoresistance mediator in human malignant melanoma. Moreover, our findings show that ABCB5 is a novel molecular marker for a distinct subset of chemoresistant, stem cell phenotype-expressing tumor cells among melanoma bulk populations and indicate that these chemoresistant cells can be specifically targeted via ABCB5 to enhance cytotoxic efficacy.


Journal of Biological Chemistry | 2005

Allelic Expression Imbalance of Human mu Opioid Receptor (OPRM1) Caused by Variant A118G

Ying Zhang; Danxin Wang; Andrew D. Johnson; Audrey C. Papp; Wolfgang Sadee

As a primary target for opioid drugs and peptides, the mu opioid receptor (OPRM1) plays a key role in pain perception and addiction. Genetic variants of OPRM1 have been implicated in predisposition to drug addiction, in particular the single nucleotide polymorphism A118G, leading to an N40D substitution, with an allele frequency of 10–32%, and uncertain functions. We have measured allele-specific mRNA expression of OPRM1 in human autopsy brain tissues, using A118G as a marker. In 8 heterozygous samples measured, the A118 mRNA allele was 1.5–2.5-fold more abundant than the G118 allele. Transfection into Chinese hamster ovary cells of a cDNA representing only the coding region of OPRM1, carrying adenosine, guanosine, cytidine, and thymidine in position 118, resulted in 1.5-fold lower mRNA levels only for OPRM1-G118, and more than 10-fold lower OPRM1 protein levels, measured by Western blotting and receptor binding assay. After transfection and inhibition of transcription with actinomycin D, analysis of mRNA turnover failed to reveal differences in mRNA stability between A118 and G118 alleles, indicating a defect in transcription or mRNA maturation. These results indicate that OPRM1-G118 is a functional variant with deleterious effects on both mRNA and protein yield. Clarifying the functional relevance of polymorphisms associated with susceptibility to a complex disorder such as drug addiction provides a foundation for clinical association studies.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Polymorphisms in human dopamine D2 receptor gene affect gene expression, splicing, and neuronal activity during working memory

Ying Zhang; Alessandro Bertolino; Leonardo Fazio; Giuseppe Blasi; Antonio Rampino; Raffaella Romano; Mei Ling T Lee; Tao Xiao; Audrey C. Papp; Danxin Wang; Wolfgang Sadee

Subcortical dopamine D2 receptor (DRD2) signaling is implicated in cognitive processes and brain disorders, but the effect of DRD2 variants remains ambiguous. We measured allelic mRNA expression in postmortem human striatum and prefrontal cortex and then performed single nucleotide polymorphism (SNP) scans of the DRD2 locus. A previously uncharacterized promoter SNP (rs12364283) located in a conserved suppressor region was associated with enhanced DRD2 expression, whereas previously studied DRD2 variants failed to affect expression. Moreover, two frequent intronic SNPs (rs2283265 and rs1076560) decreased expression of DRD2 short splice variant (expressed mainly presynaptically) relative to DRD2 long (postsynaptic), a finding reproduced in vitro by using minigene constructs. Being in strong linkage disequilibrium with each other, both intronic SNPs (but not rs12364283) were also associated with greater activity of striatum and prefrontal cortex measured with fMRI during working memory and with reduced performance in working memory and attentional control tasks in healthy humans. Our results identify regulatory DRD2 polymorphisms that modify mRNA expression and splicing and working memory pathways.


Journal of Neurochemistry | 2002

Phosphorylation and agonist-specific intracellular trafficking of an epitope-tagged μ-opioid receptor expressed in HEK 293 cells

James R. Arden; Veronica Segredo; Zaijie Wang; Jelveh Lameh; Wolfgang Sadee

Abstract: We expressed the cloned μ‐opioid receptor (μR) in high abundance (5.5 × 106 sites/cell) with an amino‐terminal epitope tag (EYMPME) in human embryonic kidney 293 cells. The epitope‐tagged receptor (EE‐μR) was similar to the untagged μR in ligand binding and agonist‐dependent inhibition of cyclic AMP accumulation. By confocal microscopy, the labeled receptor was shown to be largely confined to the plasma membrane. Pretreatment with morphine failed to affect the cellular distribution of the receptor as judged by immunofluorescence and tracer binding studies. In contrast, exposure to the μ‐specific peptide agonist [d‐Ala2,MePhe4,Glyol5]enkephalin (DAMGO) caused strong labeling of endocytic vesicles, indicating extensive agonist‐induced cellular redistribution of EE‐μR. Tracer binding studies suggested partial net internalization and a small degree of down‐regulation caused by DAMGO. EE‐μR‐containing membranes were solubilized in detergent [3‐[(3‐cholamidopropyl)dimethylammonio]‐1‐propanesulfonate] and immunoprecipitated by an anti‐epitope monoclonal antibody. Immunoblotting revealed a prominent band at ∼70 kDa with weaker bands at ∼65 kDa. EE‐μR was labeled with [γ‐32P]ATP in permeabilized cells, immunoprecipitated, and analyzed by polyacrylamide gel electrophoresis autoradiography. A prominent band at 65–70 kDa indicated the presence of basal receptor phosphorylation occurring in the absence of agonist, which was enhanced ∼1.8‐fold with the addition of morphine. In conclusion, intracellular trafficking of the μR appears to depend on the agonist, with morphine and DAMGO having markedly different effects. Unlike other G protein‐coupled receptors, basal phosphorylation is substantial, even in the absence of agonist.


Pharmacogenomics Journal | 2011

Intronic polymorphism in CYP3A4 affects hepatic expression and response to statin drugs

D Wang; Y Guo; Sa Wrighton; Ge Cooke; Wolfgang Sadee

Cytochrome P450 3A4 (CYP3A4) metabolizes ∼50% of all clinically used drugs. Although CYP3A4 expression varies widely between individuals, the contribution of genetic factors remains uncertain. In this study, we measured allelic CYP3A4 heteronuclear RNA (hnRNA) and mRNA expression in 76 human liver samples heterozygous for at least one of eight marker SNPs and found marked allelic expression imbalance (1.6–6.3-fold) in 10/76 liver samples (13%). This was fully accounted for by an intron 6 SNP (rs35599367, C>T), which also affected mRNA expression in cell culture on minigene transfections. CYP3A4 mRNA level and enzyme activity in livers with CC genotype were 1.7- and 2.5-fold, respectively, greater than in CT and TT carriers. In 235 patients taking stable doses of atorvastatin, simvastatin, or lovastatin for lipid control, carriers of the T allele required significantly lower statin doses (0.2–0.6-fold, P=0.019) than non-T carriers for optimal lipid control. These results indicate that intron 6 SNP rs35599367 markedly affects expression of CYP3A4 and could serve as a biomarker for predicting response to CYP3A4-metabolized drugs.


Molecular Cancer Therapeutics | 2008

MicroRNAs modulate the chemosensitivity of tumor cells

Paul E. Blower; Ji Hyun Chung; Joseph S. Verducci; Shili Lin; Jong Kook Park; Zunyan Dai; Chang Gong Liu; Thomas D. Schmittgen; William C. Reinhold; Carlo M. Croce; John N. Weinstein; Wolfgang Sadee

MicroRNAs are strongly implicated in such processes as development, carcinogenesis, cell survival, and apoptosis. It is likely, therefore, that they can also modulate sensitivity and resistance to anticancer drugs in substantial ways. To test this hypothesis, we studied the pharmacologic roles of three microRNAs previously implicated in cancer biology (let-7i, mir-16, and mir-21) and also used in silico methods to test pharmacologic microRNA effects more broadly. In the experimental system, we increased the expression of individual microRNAs by transfecting their precursors (which are active) or suppressed the expression by transfection of antisense oligomers. In three NCI-60 human cancer cell lines, a panel of 60 lines used for anticancer drug discovery, we assessed the growth-inhibitory potencies of 14 structurally diverse compounds with known anticancer activities. Changing the cellular levels of let-7i, mir-16, and mir-21 affected the potencies of a number of the anticancer agents by up to 4-fold. The effect was most prominent with mir-21, with 10 of 28 cell-compound pairs showing significant shifts in growth-inhibitory activity. Varying mir-21 levels changed potencies in opposite directions depending on compound class; indicating that different mechanisms determine toxic and protective effects. In silico comparison of drug potencies with microRNA expression profiles across the entire NCI-60 panel revealed that ∼30 microRNAs, including mir-21, show highly significant correlations with numerous anticancer agents. Ten of those microRNAs have already been implicated in cancer biology. Our results support a substantial role for microRNAs in anticancer drug response, suggesting novel potential approaches to the improvement of chemotherapy. [Mol Cancer Ther 2008;7(1):1–9]


Cancer Research | 2004

Membrane Transporters and Channels: Role of the Transportome in Cancer Chemosensitivity and Chemoresistance

Ying Huang; Pascale Anderle; Kimberly J. Bussey; Catalin Barbacioru; Uma Shankavaram; Zunyan Dai; William C. Reinhold; Audrey C. Papp; John N. Weinstein; Wolfgang Sadee

Membrane transporters and channels (collectively the transportome) govern cellular influx and efflux of ions, nutrients, and drugs. We used oligonucleotide arrays to analyze gene expression of the transportome in 60 human cancer cell lines used by the National Cancer Institute for drug screening. Correlating gene expression with the potencies of 119 standard anticancer drugs identified known drug-transporter interactions and suggested novel ones. Folate, nucleoside, and amino acid transporters positively correlated with chemosensitivity to their respective drug substrates. We validated the positive correlation between SLC29A1 (nucleoside transporter ENT1) expression and potency of nucleoside analogues, azacytidine and inosine-glycodialdehyde. Application of an inhibitor of SLC29A1, nitrobenzylmercaptopurine ribonucleoside, significantly reduced the potency of these two drugs, indicating that SLC29A1 plays a role in cellular uptake. Three ABC efflux transporters (ABCB1, ABCC3, and ABCB5) showed significant negative correlations with multiple drugs, suggesting a mechanism of drug resistance. ABCB1 expression correlated negatively with potencies of 19 known ABCB1 substrates and with Baker’s antifol and geldanamycin. Use of RNA interference reduced ABCB1 mRNA levels and concomitantly increased sensitivity to these two drugs, as expected for ABCB1 substrates. Similarly, specific silencing of ABCB5 by small interfering RNA increased sensitivity to several drugs in melanoma cells, implicating ABCB5 as a novel chemoresistance factor. Ion exchangers, ion channels, and subunits of proton and sodium pumps variably correlated with drug potency. This study identifies numerous potential drug-transporter relationships and supports a prominent role for membrane transport in determining chemosensitivity. Measurement of transporter gene expression may prove useful in predicting anticancer drug response.


Molecular Cancer Therapeutics | 2007

MicroRNA expression profiles for the NCI-60 cancer cell panel

Paul E. Blower; Joseph S. Verducci; Shili Lin; Jin Zhou; Ji Hyun Chung; Zunyan Dai; Chang Gong Liu; William C. Reinhold; Philip L. Lorenzi; Eric P. Kaldjian; Carlo M. Croce; John N. Weinstein; Wolfgang Sadee

Advances in the understanding of cancer cell biology and response to drug treatment have benefited from new molecular technologies and methods for integrating information from multiple sources. The NCI-60, a panel of 60 diverse human cancer cell lines, has been used by the National Cancer Institute to screen >100,000 chemical compounds and natural product extracts for anticancer activity. The NCI-60 has also been profiled for mRNA and protein expression, mutational status, chromosomal aberrations, and DNA copy number, generating an unparalleled public resource for integrated chemogenomic studies. Recently, microRNAs have been shown to target particular sets of mRNAs, thereby preventing translation or accelerating mRNA turnover. To complement the existing NCI-60 data sets, we have measured expression levels of microRNAs in the NCI-60 and incorporated the resulting data into the CellMiner program package for integrative analysis. Cell line groupings based on microRNA expression were generally consistent with tissue type and with cell line clustering based on mRNA expression. However, mRNA expression seemed to be somewhat more informative for discriminating among tissue types than was microRNA expression. In addition, we found that there does not seem to be a significant correlation between microRNA expression patterns and those of known target transcripts. Comparison of microRNA expression patterns and compound potency patterns showed significant correlations, suggesting that microRNAs may play a role in chemoresistance. Combined with gene expression and other biological data using multivariate analysis, microRNA expression profiles may provide a critical link for understanding mechanisms involved in chemosensitivity and chemoresistance. [Mol Cancer Ther 2007;6(5):1483–91]


Infection and Immunity | 2012

Innate Immune Gene Polymorphisms in Tuberculosis

Abul K. Azad; Wolfgang Sadee; Larry S. Schlesinger

ABSTRACT Tuberculosis (TB) is a leading cause worldwide of human mortality attributable to a single infectious agent. Recent studies targeting candidate genes and “case-control” association have revealed numerous polymorphisms implicated in host susceptibility to TB. Here, we review current progress in the understanding of causative polymorphisms in host innate immune genes associated with TB pathogenesis. We discuss genes encoding several types of proteins: macrophage receptors, such as the mannose receptor (MR, CD206), dendritic cell-specific ICAM-3-grabbing nonintegrin (DC-SIGN, CD209), Dectin-1, Toll-like receptors (TLRs), complement receptor 3 (CR3, CD11b/CD18), nucleotide oligomerization domain 1 (NOD1) and NOD2, CD14, P2X7, and the vitamin D nuclear receptor (VDR); soluble C-type lectins, such as surfactant protein-A (SP-A), SP-D, and mannose-binding lectin (MBL); phagocyte cytokines, such as tumor necrosis factor (TNF), interleukin-1β (IL-1β), IL-6, IL-10, IL-12, and IL-18; chemokines, such as IL-8, monocyte chemoattractant protein 1 (MCP-1), RANTES, and CXCL10; and other important innate immune molecules, such as inducible nitric oxide synthase (iNOS) and solute carrier protein 11A1 (SLC11A1). Polymorphisms in these genes have been variably associated with susceptibility to TB among different populations. This apparent variability is probably accounted for by evolutionary selection pressure as a result of long-term host-pathogen interactions in certain regions or populations and, in part, by lack of proper study design and limited knowledge of molecular and functional effects of the implicated genetic variants. Finally, we discuss genomic technologies that hold promise for resolving questions regarding the evolutionary paths of the human genome, functional effects of polymorphisms, and corollary impacts of adaptation on human health, ultimately leading to novel approaches to controlling TB.


Blood | 2008

Regulatory polymorphism in vitamin K epoxide reductase complex subunit 1 (VKORC1) affects gene expression and warfarin dose requirement

Danxin Wang; Hui-Zi Chen; Kathryn M. Momary; Larisa H. Cavallari; Julie A. Johnson; Wolfgang Sadee

Warfarin dose requirements have been associated with 2 main haplotypes in VKORC1, but the responsible polymorphisms remain unknown. To search for regulatory polymorphisms, we measured allelic mRNA expression of VKORC1 in human liver, heart, and B lymphocytes. The observed 2-fold allelic mRNA expression imbalance narrowed possible candidate SNPs to -1639G>A and 1173C<T. This genotype effect was observed selectively in the liver but not in heart or lymphocytes. In vitro expression of VKORC1 gene constructs, including coding and promoter regions, failed to reveal any genotype effect on transcription and mRNA processing. Chromatin immunoprecipitation with antibodies against acetyl-histone3 and K4-trimethyl-histone3 revealed preferential association of the promoter -1639 G allele with active chromatin, consistent with enhanced mRNA expression. The minor -1639 A allele generates a suppressor E-box binding site, apparently regulating gene expression by a mechanism undetectable with reporter gene assays. A clinical association study demonstrated that promoter SNP -1639G>A, and the tightly linked intron1 SNP 1173C>T, predict warfarin dose more accurately than intron 2 SNP 1542G>C in blacks. Increased warfarin dose requirement in blacks was accounted for by lower frequency of the -1639 A allele. Therefore, -1639G>A is a suitable biomarker for warfarin dosing across ethnic populations.

Collaboration


Dive into the Wolfgang Sadee's collaboration.

Top Co-Authors

Avatar

Danxin Wang

Casa Sollievo della Sofferenza

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amy Webb

Ohio State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yan Gong

University of Florida

View shared research outputs
Researchain Logo
Decentralizing Knowledge