Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Audrey H. Sawyer is active.

Publication


Featured researches published by Audrey H. Sawyer.


Water Resources Research | 2015

Multiscale Hyporheic Exchange Through Strongly Heterogeneous Sediments

Timothy T. Pryshlak; Audrey H. Sawyer; Susa H. Stonedahl; Mohamad Reza Soltanian

Heterogeneity in hydraulic conductivity (K) and channel morphology both control surface water-groundwater exchange (hyporheic exchange), which influences stream ecosystem processes and biogeochemical cycles. Here we show that heterogeneity in K is the dominant control on exchange rates, residence times, and patterns in hyporheic zones with abrupt lithologic contrasts. We simulated hyporheic exchange in a representative low-gradient stream with 300 different bimodal K fields composed of sand and silt. Simulations span five sets of sand-silt ratios and two sets of low and high K contrasts (one and three orders of magnitude). Heterogeneity increases interfacial flux by an order of magnitude relative to homogeneous cases, drastically changes the shape of residence time distributions, and decreases median residence times. The positioning of highly permeable sand bodies controls patterns of interfacial flux and flow paths. These results are remarkably different from previous studies of smooth, continuous K fields that indicate only moderate effects on hyporheic exchange. Our results also show that hyporheic residence times are least predictable when sand body connectivity is low. As sand body connectivity increases, the expected residence time distribution (ensemble average for a given sand-silt ratio) remains approximately constant, but the uncertainty around the expectation decreases. Including strong heterogeneity in hyporheic models is imperative for understanding hyporheic fluxes and solute transport. In streams with strongly heterogeneous sediments, characterizing lithologic structure is more critical for predicting hyporheic exchange metrics than characterizing channel morphology. This article is protected by copyright. All rights reserved.


Geophysical Research Letters | 2015

Enhanced removal of groundwater-borne nitrate in heterogeneous aquatic sediments

Audrey H. Sawyer

Anthropogenic nitrate loads to rivers and coasts deteriorate coastal water quality. The primary sink for nitrate is denitrification in aquatic sediments. Here I show that nitrate removal rates in upwelling groundwater are as much as 60 times more efficient in heterogeneous than equivalent homogeneous aquatic sediments, even when travel times are the same. Coupled flow and reactive transport simulations were used to quantify the removal of groundwater-borne nitrate in aquatic sediments with sand and silt structures that represent infilled burrows, rip-up clasts, or other core-scale features. In silt structures with greater organic carbon content and microbial biomass, aerobic respiration consumes oxygen, creating localized zones of denitrification that would not otherwise exist in homogeneous sediments. While hot spots of denitrification have previously been shown to form in organic-rich aggregates in soils and sediments, this study is the first to quantify their potentially large influence on groundwater-borne nitrate loads to surface waters.


Water Resources Research | 2014

Hydrologic dynamics and geochemical responses within a floodplain aquifer and hyporheic zone during Hurricane Sandy

Audrey H. Sawyer; L. A. Kaplan; Olesya Lazareva; Holly A. Michael

Storms dominate solute export budgets from catchments and drive hydrogeochemical changes in the near-stream environment. We captured near-stream hydrogeochemical dynamics during an intense storm (Hurricane Sandy, October 2012), by instrumenting a riparian-hyporheic zone transect of White Clay Creek in the Christina River Basin Critical Zone Observatory with pressure transducers, redox probes, and pore water samplers. In the floodplain aquifer, preferential vertical flow paths such as macropores facilitated rapid infiltration early in the storm. Water table rose quickly and promoted continuous groundwater discharge to the stream. Floodplain-hillslope topography controlled poststorm aquifer drainage rates, as the broad, western floodplain aquifer drained more slowly than the narrow, eastern floodplain aquifer adjacent to a steep hillslope. These changes in groundwater flow drove heterogeneous geochemical responses in the floodplain aquifer and hyporheic zone. Vertical infiltration in the floodplain and hyporheic exchange in the streambed increased DOC and oxygen delivery to microbially active sediments, which may have enhanced respiration. Resulting geochemical perturbations persisted from days to weeks after the storm. Our observations suggest that groundwater-borne solute delivery to streams during storms depends on unique interactions of vertical infiltration along preferential pathways, perturbations to groundwater geochemistry, and topographically controlled drainage rates.


Science | 2016

Continental patterns of submarine groundwater discharge reveal coastal vulnerabilities

Audrey H. Sawyer; Cédric H. David; James S. Famiglietti

Water dissolving and water removing Not all groundwater ends up flowing into rivers. Some is discharged directly into the ocean along the coast. Although much lower in volume than water transported by rivers, such submarine groundwater discharge can be a hidden source of dissolved ions, nutrients, or contaminants from human activities. Sawyer et al. performed a high-resolution continental-scale analysis of fresh groundwater discharge along the coastline of the United States. In total, more than one-fifth of coastal waters are vulnerable to groundwater-borne contamination. Science, this issue p. 705 Groundwater discharge to the oceans may impair water quality along one-fifth of the coastal United States. Submarine groundwater discharge (SGD) delivers water and dissolved chemicals from continents to oceans, and its spatial distribution affects coastal water quality. Unlike rivers, SGD is broadly distributed and relatively difficult to measure, especially at continental scales. We present spatially resolved estimates of fresh (land-derived) SGD for the contiguous United States based on historical climate records and high-resolution hydrographic data. Climate controls regional patterns in fresh SGD, while coastal drainage geometry imparts strong local variability. Because the recharge zones that contribute fresh SGD are densely populated, the quality and quantity of fresh SGD are both vulnerable to anthropogenic disturbance. Our analysis unveils hot spots for contaminant discharge to marine waters and saltwater intrusion into coastal aquifers.


Geophysical Research Letters | 2015

Surface water‐groundwater connectivity in deltaic distributary channel networks

Audrey H. Sawyer; Douglas A. Edmonds; Deon Knights

Delta distributary channel networks increase river water contact with sediments and provide the final opportunity to process nutrients and other solutes before river water discharges to the ocean. In order to understand surface water-groundwater interactions at the scale of the distributary channel network, we created three numerical deltas that ranged in composition from silt to sand using Delft3D, a morphodynamic flow and sediment transport model. We then linked models of mean annual river discharge to steady groundwater flow in MODFLOW. Under mean annual discharge, exchange rates through the numerical deltas are enhanced relative to a single-threaded river. We calculate that exchange rates across a <10 km2 network are equivalent to exchange through ~10–100 km of single-threaded river channel. Exchange rates are greatest in the coarse-grained delta due to its permeability and morphology. Groundwater residence times range from hours to centuries and have fractal tails. Deltas are vanishing due to relative sea level rise. River diversion projects aimed at creating new deltaic land should also aim to restore surface water-groundwater connectivity, which is critical for biogeochemical processing in wetlands. We recommend designing diversions to capture more sand and thus maximize surface water-groundwater connectivity.


Water Resources Research | 2017

Tidal controls on riverbed denitrification along a tidal freshwater zone

Deon Knights; Audrey H. Sawyer; Rebecca T. Barnes; Cole T. Musial; Samuel Bray

In coastal rivers, tidal pumping enhances the exchange of oxygen-rich river water across the sediment-water interface, controlling nitrogen cycling in riverbed sediment. We developed a one-dimensional, fluid flow and solute transport model that quantifies the influence of tidal pumping on nitrate removal and applied it to the tidal freshwater zone (TFZ) of White Clay Creek (Delaware, USA). In field observations and models, both oxygenated river water and anoxic groundwater deliver nitrate to carbon-rich riverbed sediment. A zone of nitrate removal forms beneath the aerobic interval, which expands and contracts over daily timescales due to tidal pumping. At high tide when oxygen-rich river water infiltrates into the bed, denitrification rates decrease by 25% relative to low tide. In the absence of tidal pumping, our model predicts that the aerobic zone would be thinner, and denitrification rates would increase by 10%. As tidal amplitude increases toward the coast, nitrate removal rates should decrease due to enhanced oxygen exchange across the sediment-water interface, based on sensitivity analysis. Denitrification hot spots in TFZs are more likely to occur in less permeable sediment under lower tidal ranges and higher rates of ambient groundwater discharge. Our models suggest that tidal pumping is not efficient at removing surface water nitrate but can remove up to 81% of nitrate from discharging groundwater in the TFZ of White Clay Creek. Given the high population densities of coastal watersheds, the reactive riverbeds of TFZs play a critical role in mitigating new nitrogen loads to coasts.


Journal of Geophysical Research | 2016

Seasonal hyporheic dynamics control coupled microbiology and geochemistry in Colorado River sediments

Robert E. Danczak; Audrey H. Sawyer; Kenneth H. Williams; James C. Stegen; Chad Hobson; Michael J. Wilkins

©2016. American Geophysical Union. All Rights Reserved. Riverbed microbial communities play an oversized role in many watershed ecosystem functions, including the processing of organic carbon, cycling of nitrogen, and alterations to metal mobility. The structure and activity of microbial assemblages depend in part on geochemical conditions set by river-groundwater exchange or hyporheic exchange. To assess how seasonal changes in river-groundwater mixing affect these populations in a snowmelt-dominated fluvial system, vertical sediment and pore water profiles were sampled at three time points at one location in the hyporheic zone of the Colorado River and analyzed by using geochemical measurements, 16S rRNA gene sequencing, and ecological modeling. Oxic river water penetrated deepest into the subsurface during peak river discharge, while under base flow conditions, anoxic groundwater dominated shallower depths. Over a 70 cm thick interval, riverbed sediments were therefore exposed to seasonally fluctuating redox conditions and hosted microbial populations statistically different from those at both shallower and deeper locations. Additionally, microbial populations within this zone were shown to be the most dynamic across sampling time points, underlining the critical role that hyporheic mixing plays in constraining microbial abundances. Given such mixing effects, we anticipate that future changes in river discharge in mountainous, semiarid western U.S. watersheds may affect microbial community structure and function in riverbed environments, with potential implications for biogeochemical processes in riparian regions.


Ground Water | 2018

Effect of Heterogeneous Sediment Distributions on Hyporheic Flow in Physical and Numerical Models: S.H. Stonedahl et al. Groundwater x, no. x: x-xx

Susa H. Stonedahl; Audrey H. Sawyer; Forrest Stonedahl; Caleb Reiter; Caleb Gibson

Variations in permeability have been found to significantly affect the flow of water though hyporheic systems, especially in regions with discontinuous transitions between distinct streambed lithologies. In this study, we probabilistically arranged two sediments (sand and sandy gravel) in a grid framework and imposed a single hyporheic flow cell across the grid to investigate how discontinuous permeability fields influence volumetric flow and residence time distributions. We used both a physical system and computer simulations to model flow through this sediment grid. A solution of blue dye and salt was pumped into the system and used to detect flow. We recorded the dye location using time-lapse photography and measured the electrolytic conductivity levels as the water exited the system as a proxy for salt concentration. We also used a computer simulation to calculate dye-fronts, residence times, and exiting salt concentrations for the modeled system. Comparison between simulations and physical measurements yielded strong agreement. In further simulations with 300 different grids, we found a strong correlation between volumetric flow rate and the placement of high permeability grid cells in regions of high hydraulic head gradients. One implication is that small anomalies in streambed permeability have a disproportionately large influence on hyporheic flows when located near steep head gradients such as steps. We also used moving averages with varying window sizes to investigate the effect of the abruptness of transitions between sediment types. We found that smoother permeability fields increased the volumetric flow rate and decreased the median residence times.


Water Resources Research | 2009

Hyporheic flow and residence time distributions in heterogeneous cross‐bedded sediment

Audrey H. Sawyer; M. Bayani Cardenas


Hydrological Processes | 2009

Impact of dam operations on hyporheic exchange in the riparian zone of a regulated river

Audrey H. Sawyer; M. Bayani Cardenas; Ashleigh Bomar; Meredith Mackey

Collaboration


Dive into the Audrey H. Sawyer's collaboration.

Top Co-Authors

Avatar

M. Bayani Cardenas

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cédric H. David

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Jim Buttles

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John D. Nowinski

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge