Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rebecca T. Barnes is active.

Publication


Featured researches published by Rebecca T. Barnes.


Geobiology | 2011

Twelve testable hypotheses on the geobiology of weathering

Susan L. Brantley; J. P. Megonigal; Frederick N. Scatena; Zsuzsanna Balogh-Brunstad; Rebecca T. Barnes; Mary Ann Bruns; P. Van Cappellen; Katerina Dontsova; Hilairy E. Hartnett; Anthony S. Hartshorn; Arjun M. Heimsath; Elizabeth M. Herndon; Lixin Jin; C. K. Keller; Jonathan R. Leake; William H. McDowell; F. C. Meinzer; T. J. Mozdzer; Steven T. Petsch; J. Pett-Ridge; Kurt S. Pregitzer; Peter A. Raymond; Clifford S. Riebe; K. Shumaker; A. Sutton-Grier; R. Walter; Kyungsoo Yoo

Critical Zone (CZ) research investigates the chemical, physical, and biological processes that modulate the Earths surface. Here, we advance 12 hypotheses that must be tested to improve our understanding of the CZ: (1) Solar-to-chemical conversion of energy by plants regulates flows of carbon, water, and nutrients through plant-microbe soil networks, thereby controlling the location and extent of biological weathering. (2) Biological stoichiometry drives changes in mineral stoichiometry and distribution through weathering. (3) On landscapes experiencing little erosion, biology drives weathering during initial succession, whereas weathering drives biology over the long term. (4) In eroding landscapes, weathering-front advance at depth is coupled to surface denudation via biotic processes. (5) Biology shapes the topography of the Critical Zone. (6) The impact of climate forcing on denudation rates in natural systems can be predicted from models incorporating biogeochemical reaction rates and geomorphological transport laws. (7) Rising global temperatures will increase carbon losses from the Critical Zone. (8) Rising atmospheric P(CO2) will increase rates and extents of mineral weathering in soils. (9) Riverine solute fluxes will respond to changes in climate primarily due to changes in water fluxes and secondarily through changes in biologically mediated weathering. (10) Land use change will impact Critical Zone processes and exports more than climate change. (11) In many severely altered settings, restoration of hydrological processes is possible in decades or less, whereas restoration of biodiversity and biogeochemical processes requires longer timescales. (12) Biogeochemical properties impart thresholds or tipping points beyond which rapid and irreversible losses of ecosystem health, function, and services can occur.


PLOS ONE | 2014

Biochar-induced changes in soil hydraulic conductivity and dissolved nutrient fluxes constrained by laboratory experiments.

Rebecca T. Barnes; Morgan E. Gallagher; Caroline A. Masiello; Zuolin Liu; Brandon Dugan

The addition of charcoal (or biochar) to soil has significant carbon sequestration and agronomic potential, making it important to determine how this potentially large anthropogenic carbon influx will alter ecosystem functions. We used column experiments to quantify how hydrologic and nutrient-retention characteristics of three soil materials differed with biochar amendment. We compared three homogeneous soil materials (sand, organic-rich topsoil, and clay-rich Hapludert) to provide a basic understanding of biochar-soil-water interactions. On average, biochar amendment decreased saturated hydraulic conductivity (K) by 92% in sand and 67% in organic soil, but increased K by 328% in clay-rich soil. The change in K for sand was not predicted by the accompanying physical changes to the soil mixture; the sand-biochar mixture was less dense and more porous than sand without biochar. We propose two hydrologic pathways that are potential drivers for this behavior: one through the interstitial biochar-sand space and a second through pores within the biochar grains themselves. This second pathway adds to the porosity of the soil mixture; however, it likely does not add to the effective soil K due to its tortuosity and smaller pore size. Therefore, the addition of biochar can increase or decrease soil drainage, and suggests that any potential improvement of water delivery to plants is dependent on soil type, biochar amendment rate, and biochar properties. Changes in dissolved carbon (C) and nitrogen (N) fluxes also differed; with biochar increasing the C flux from organic-poor sand, decreasing it from organic-rich soils, and retaining small amounts of soil-derived N. The aromaticity of C lost from sand and clay increased, suggesting lost C was biochar-derived; though the loss accounts for only 0.05% of added biochar-C. Thus, the direction and magnitude of hydraulic, C, and N changes associated with biochar amendments are soil type (composition and particle size) dependent.


Canadian Journal of Fisheries and Aquatic Sciences | 2009

Anadromous alewives (Alosa pseudoharengus) contribute marine-derived nutrients to coastal stream food webs

Annika W. Walters; Rebecca T. Barnes; David M. Post

Diadromous fish are an important link between marine and freshwater food webs. Pacific salmon (Oncorhynchus spp.) strongly impact nutrient dynamics in inland waters and anadromous alewife (Alosa pseudoharengus) may play a similar ecological role along the Atlantic coast. The annual spawning migration of anadromous alewife contributes, on average, 1050 g of nitrogen and 120 g of phosphorus to Bride Brook, Connecticut, USA, through excretion and mortality each year. Natural abundance stable isotope analyses indicate that this influx of marine-derived nitrogen is rapidly incorporated into the stream food web. An enriched δ15N signal, indicative of a marine origin, is present at all stream trophic levels with the greatest level of enrichment coincident with the timing of the anadromous alewife spawning migration. There was no significant effect of this nutrient influx on water chemistry, leaf decomposition, or periphyton accrual. Dam removal and fish ladder construction will allow anadromous alewife to regain...


Ecological Applications | 2010

Land-use controls on sources and processing of nitrate in small watersheds: insights from dual isotopic analysis

Rebecca T. Barnes; Peter A. Raymond

Studies have repeatedly shown that agricultural and urban areas export considerably more nitrogen to streams than forested counterparts, yet it is difficult to identify and quantify nitrogen sources to streams due to complications associated with terrestrial and in-stream biogeochemical processes. In this study, we used the isotopic composition of nitrate (delta15N-NO3- and delta18O-NO3-) in conjunction with a simple numerical model to examine the spatial and temporal variability of nitrate (NO3-) export across a land-use gradient and how agricultural and urban development affects net removal mechanisms. In an effort to isolate the effects of land use, we chose small headwater systems in close proximity to each other, limiting the variation in geology, surficial materials, and climate between sites. The delta15N and delta18O of stream NO3- varied significantly between urban, agricultural, and forested watersheds, indicating that nitrogen sources are the primary determinant of the delta15N-NO3-, while the delta18O-NO3- was found to reflect biogeochemical processes. The greatest NO3- concentrations corresponded with the highest stream delta15N-NO3- values due to the enriched nature of two dominant anthropogenic sources, septic and manure, within the urban and agricultural watersheds, respectively. On average, net removal of the available NO3- pool within urban and agricultural catchments was estimated at 45%. The variation in the estimated net removal of NO3- from developed watersheds was related to both drainage area and the availability of organic carbon. The determination of differentiated isotopic land-use signatures and dominant seasonal mechanisms illustrates the usefulness of this approach in examining the sources and processing of excess nitrogen within headwater catchments.


Journal of Geophysical Research | 2014

Nitrogen retention and transport differ by hillslope aspect at the rain‐snow transition of the Colorado Front Range

Eve-Lyn S. Hinckley; Rebecca T. Barnes; Suzanne P. Anderson; Mark W. Williams; Stefano M. Bernasconi

Over a decade of research in the alpine zone of the Colorado Front Range has shown that atmospheric nitrogen (N) deposition originating from source areas in low elevation, developed areas, has changed ecosystem stoichiometry, nutrient transformations, and aquatic community structure. Less research has occurred in the montane zone, which sits at the current rain-snow transition and is vulnerable to climate change, land cover disturbances, and increased N loading. We conducted lithium bromide and 15N-nitrate (15NO3−) tracer studies during spring snowmelt to determine the immediate fate of N in a forested catchment. Measurements of N species and applied tracers in ecosystem pools and soil solution on north and south facing slopes provided a means of determining export pathways and uptake of deposited N. Our results indicate that NO3− residence time is longer within north than south facing slope soils, due to longer contact with the soil matrix, greater microbial biomass N, and a larger soil organic matter pool. On the north facing slope, >50% of the 1 kg ha−1 of 15NO3− applied was retained in soil and vegetation pools. On the south facing slope, rapid transport during sporadic snowmelt events reduced total recovery of the 15N label in ecosystem pools to 16–34%. Our results suggest that snowmelt events quickly transport N through south facing slope soils, potentially contributing more N to aquatic systems than north facing slopes. Thus, it is important to consider how the fate of N differs by hillslope aspect when predicting catchment-scale N export and determining ecosystem N status across the Colorado Front Range.


Water Resources Research | 2017

Tidal controls on riverbed denitrification along a tidal freshwater zone

Deon Knights; Audrey H. Sawyer; Rebecca T. Barnes; Cole T. Musial; Samuel Bray

In coastal rivers, tidal pumping enhances the exchange of oxygen-rich river water across the sediment-water interface, controlling nitrogen cycling in riverbed sediment. We developed a one-dimensional, fluid flow and solute transport model that quantifies the influence of tidal pumping on nitrate removal and applied it to the tidal freshwater zone (TFZ) of White Clay Creek (Delaware, USA). In field observations and models, both oxygenated river water and anoxic groundwater deliver nitrate to carbon-rich riverbed sediment. A zone of nitrate removal forms beneath the aerobic interval, which expands and contracts over daily timescales due to tidal pumping. At high tide when oxygen-rich river water infiltrates into the bed, denitrification rates decrease by 25% relative to low tide. In the absence of tidal pumping, our model predicts that the aerobic zone would be thinner, and denitrification rates would increase by 10%. As tidal amplitude increases toward the coast, nitrate removal rates should decrease due to enhanced oxygen exchange across the sediment-water interface, based on sensitivity analysis. Denitrification hot spots in TFZs are more likely to occur in less permeable sediment under lower tidal ranges and higher rates of ambient groundwater discharge. Our models suggest that tidal pumping is not efficient at removing surface water nitrate but can remove up to 81% of nitrate from discharging groundwater in the TFZ of White Clay Creek. Given the high population densities of coastal watersheds, the reactive riverbeds of TFZs play a critical role in mitigating new nitrogen loads to coasts.


Environmental Science & Technology | 2018

Riverine Export of Aged Carbon Driven by Flow Path Depth and Residence Time

Rebecca T. Barnes; David Butman; Henry F. Wilson; Peter A. Raymond

The flux of terrestrial C to rivers has increased relative to preindustrial levels, a fraction of which is aged dissolved organic C (DOC). In rivers, C is stored in sediments, exported to the ocean, or (bio)chemically processed and released as CO2. Disturbance changes land cover and hydrology, shifting potential sources and processing of DOC. To investigate the likely sources of aged DOC, we analyzed radiocarbon ages, chemical, and spectral properties of DOC and major ions from 19 rivers draining the coterminous U.S. and Arctic. DOC optics indicated that the majority is exported as aromatic, high molecular weight, modern molecules while aged DOC tended to consist of smaller, microbial degradation products. Aged DOC exports, observed regularly in arid basins and during base flow in arctic rivers, are associated with higher proportion of mineral weathering products, suggesting deeper flows paths. These patterns also indicate potential for production of microbial byproducts as DOC ages in soil and water with longer periods of time between production and transport. Thus, changes in hydrology associated with landscape alteration (e.g., tilling or shifting climates) that can result in deeper flow paths or longer residence times will likely lead to a greater proportion of aged carbon in riverine exports.


Ecosystems | 2016

A Framework to Assess Biogeochemical Response to Ecosystem Disturbance Using Nutrient Partitioning Ratios

J. Marty Kranabetter; Kendra K. McLauchlan; Sara K. Enders; Jennifer M. Fraterrigo; Philip E. Higuera; Jesse L. Morris; Edward B. Rastetter; Rebecca T. Barnes; Brian Buma; Daniel G. Gavin; Laci M. Gerhart; Lindsey Gillson; Peter Hietz; Michelle C. Mack; Brenden E. McNeil; Steven S. Perakis

Disturbances affect almost all terrestrial ecosystems, but it has been difficult to identify general principles regarding these influences. To improve our understanding of the long-term consequences of disturbance on terrestrial ecosystems, we present a conceptual framework that analyzes disturbances by their biogeochemical impacts. We posit that the ratio of soil and plant nutrient stocks in mature ecosystems represents a characteristic site property. Focusing on nitrogen (N), we hypothesize that this partitioning ratio (soil N: plant N) will undergo a predictable trajectory after disturbance. We investigate the nature of this partitioning ratio with three approaches: (1) nutrient stock data from forested ecosystems in North America, (2) a process-based ecosystem model, and (3) conceptual shifts in site nutrient availability with altered disturbance frequency. Partitioning ratios could be applied to a variety of ecosystems and successional states, allowing for improved temporal scaling of disturbance events. The generally short-term empirical evidence for recovery trajectories of nutrient stocks and partitioning ratios suggests two areas for future research. First, we need to recognize and quantify how disturbance effects can be accreting or depleting, depending on whether their net effect is to increase or decrease ecosystem nutrient stocks. Second, we need to test how altered disturbance frequencies from the present state may be constructive or destructive in their effects on biogeochemical cycling and nutrient availability. Long-term studies, with repeated sampling of soils and vegetation, will be essential in further developing this framework of biogeochemical response to disturbance.


Hydrological Processes | 2018

Surface and subsurface water contributions to streamflow from a mesoscale watershed in complex mountain terrain

Qinghuan Zhang; John F. Knowles; Rebecca T. Barnes; Rory Cowie; Nathan D. Rock; Mark W. Williams

1 Institute of Arctic and Alpine Research, University of Colorado Boulder, Boulder, CO, USA Department of Geography, University of Colorado Boulder, Boulder, CO, USA School of Geography and Development, University of Arizona, Tucson, AZ, USA Environmental Program, Colorado College, Colorado Springs, CO, USA Mountain Studies Institute, Durango, CO, USA Correspondence Qinghuan Zhang, Institute of Arctic and Alpine Research, University of Colorado, UCB 450, Boulder, CO 80309‐0450, USA. Email: [email protected]


PLOS ONE | 2017

The potential for flower nectar to allow mosquito to mosquito transmission of Francisella tularensis

Adam Kenney; Austin Cusick; Jessica D. Payne; Anna Gaughenbaugh; Andrea Renshaw; Jenna Wright; Roger Seeber; Rebecca T. Barnes; Aleksandr Florjanczyk; Joseph Horzempa

Francisella tularensis is disseminated in nature by biting arthropods such as mosquitoes. The relationship between mosquitoes and F. tularensis in nature is highly ambiguous, due in part to the fact that mosquitoes have caused significant tularemia outbreaks despite being classified as a mechanical vector of F. tularensis. One possible explanation for mosquitoes being a prominent, yet mechanical vector is that these insects feed on flower nectar between blood meals, allowing for transmission of F. tularensis between mosquitoes. Here, we aimed to assess whether F. tularensis could survive in flower nectar. Moreover, we examined if mosquitoes could interact with or ingest and transmit F. tularensis from one source of nectar to another. F. tularensis exhibited robust survivability in flower nectar with concentrations of viable bacteria remaining consistent with the rich growth medium. Furthermore, F. tularensis was able to survive (albeit to a lesser extent) in 30% sucrose (a nectar surrogate) over a period of time consistent with that of a typical flower bloom. Although we observed diminished bacterial survival in the nectar surrogate, mosquitoes that fed on this material became colonized with F. tularensis. Finally, colonized mosquitoes were capable of transferring F. tularensis to a sterile nectar surrogate. These data suggest that flower nectar may be capable of serving as a temporary source of F. tularensis that could contribute to the amplification of outbreaks. Mosquitoes that feed on an infected mammalian host and subsequently feed on flower nectar could deposit some F. tularensis bacteria into the nectar in the process. Mosquitoes subsequently feeding on this nectar source could potentially become colonized by F. tularensis. Thus, the possibility exists that flower nectar may allow for vector-vector transmission of F. tularensis.

Collaboration


Dive into the Rebecca T. Barnes's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amanda S. Adams

University of North Carolina at Charlotte

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elaine Godfrey

University of North Carolina at Charlotte

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eve-Lyn S. Hinckley

National Ecological Observatory Network

View shared research outputs
Researchain Logo
Decentralizing Knowledge