Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Audrey McAlinden is active.

Publication


Featured researches published by Audrey McAlinden.


Developmental Dynamics | 2001

Type IIA procollagen in development of the human intervertebral disc: Regulated expression of the NH2‐propeptide by enzymic processing reveals a unique developmental pathway

Yong Zhu; Audrey McAlinden; Linda J. Sandell

Type II collagen can be synthesized in two forms generated by alternative splicing of the precursor mRNA. Type IIA procollagen, which contains a cysteine‐rich domain in the NH2‐propeptide (exon 2), is produced by precartilage and noncartilage epithelial and mesenchymal cells, and type IIB procollagen, without the cysteine‐rich domain, is characteristic of chondrocytes. Mice lacking type II collagen fail to develop intervertebral discs. We have previously shown that the human intervertebral disc and notochord synthesize primarily the type IIA form of procollagen. Therefore, we investigated the distribution of type IIA procollagen during early disc development in humans. By processes of radioactive in situ hybridization and fluorescence immunohistochemistry, we localized mRNA and protein of type IIA procollagen, type I collagen, and type III collagen in fetal intervertebral disc specimens ranging from day 42 (embryonic stage 17) to day 101 (week 14.5) of gestation. Antibodies to the three distinct domains of type IIA procollagen: the NH2‐propeptide, the fibrillar domain, and the COOH‐propeptide were used. The earliest stage of developing intervertebral disc (42 days, stage 17) was characterized by diffuse synthesis of types I and III collagens in the dense zone (intervertebral area) and synthesis of type IIA procollagen by the chondrocyte progenitor cells surrounding the disc. The notochord cells synthesized and deposited into the notochordal sheath all three fibrillar collagens. By 54 days (stage 22), the developing disc was clearly divided into three regions: 1.) the outer annulus, characterized by synthesis and deposition of types I and III collagens; 2.) the inner annulus, characterized by synthesis and deposition of type IIA collagen containing the NH2‐propeptide but devoid of the COOH‐propeptide (pN‐procollagen); and 3.) the notochord, the cells of which synthesized and deposited of all three fibrillar collagens. In later stages of fetal development (72–101 days), a change in type IIA procollagen processing was observed in the cells of the inner annulus: even though these cells continued to synthesize type IIA procollagen, they deposited into the extracellular matrix (ECM) only the processed fibrillar domain, with the NH2‐propeptide removed. This finding indicates that there is a developmentally regulated change in the processing of type IIA procollagen NH2‐propeptide in the cells of the inner annulus. This mechanism is in contrast to previously shown developmental regulation of the cysteine‐rich domain of the NH2‐propeptide by alternative splicing of the precursor mRNA. Although the cells of the inner annulus have been identified as chondrocytes, based on their shape and synthesis of characteristic ECM components, they appear to represent a distinct developmental pathway characterized by their synthesis and differential processing of type IIA procollagen. This developmental pattern may prove important for disc regeneration.


Journal of Biological Chemistry | 2001

The Amino-terminal Heptad Repeats of the Coiled-coil Neck Domain of Pulmonary Surfactant Protein D Are Necessary for the Assembly of Trimeric Subunits and Dodecamers

Pengnian Zhang; Audrey McAlinden; Shi Li; Troy Schumacher; Hongling Wang; Shasa Hu; Linda J. Sandell; Erika C. Crouch

Pulmonary surfactant protein D (SP-D), a lung host defense protein, is assembled as multimers of trimeric subunits. Trimerization of SP-D monomers is required for high affinity saccharide binding, and the oligomerization of trimers is required for many of its functions. A peptide containing the α-helical neck region can spontaneously trimerize in vitro. However, it is not known whether this sequence is necessary for the complete cellular assembly of disulfide-cross-linked, trimeric subunits and dodecamers. For the present studies, we synthesized mutant cDNAs with deletions or site-directed substitutions in the neck domain of rat SP-D, and examined the assembly of the newly synthesized proteins after transfection of CHO-K1 cells. The neck domain contains three “classical” heptad repeat motifs with leucine residues at the “d position,” and a distinctive C-terminal repeat previously suggested to drive trimeric chain association. Deletion of the highly conserved core of the latter repeat (FSRYLKK) did not interfere with the secretion of dodecamers with lectin activity. By contrast, deletion of the entire neck domain or deletion of one or two amino-terminal repeats resulted in defective molecular assembly. The secreted proteins eluted in the position of monomers by gel filtration under nondenaturing conditions. In addition, the neck + carbohydrate recognition domain of SP-D was necessary and sufficient for the trimerization of a heterologous collagen sequence located amino-terminal to the trimeric coiled-coil. These studies provide strong evidence that the amino-terminal heptad repeats of the neck domain are necessary for the intracellular, trimeric association of SP-D monomers and for the assembly and secretion of functional dodecamers.


Journal of Biological Chemistry | 2005

Alternative Splicing of Type II Procollagen Exon 2 Is Regulated by the Combination of a Weak 5′ Splice Site and an Adjacent Intronic Stem-loop Cis Element

Audrey McAlinden; Necat Havlioglu; Li Liang; Sherri R. Davies; Linda J. Sandell

Alternative splicing of the type II procollagen gene (COL2A1) is developmentally regulated during chondrogenesis. Chondroprogenitor cells produce the type IIA procollagen isoform by splicing (including) exon 2 during pre-mRNA processing, whereas differentiated chondrocytes synthesize the type IIB procollagen isoform by exon 2 skipping (exclusion). Using a COL2A1 mini-gene and chondrocytes at various stages of differentiation, we identified a non-classical consensus splicing sequence in intron 2 adjacent to the 5′ splice site, which is essential in regulating exon 2 splicing. RNA mapping confirmed this region contains secondary structure in the form of a stem-loop. Mutational analysis identified three cis elements within the conserved double-stranded stem region that are functional only in the context of the natural weak 5′ splice site of exon 2; they are 1) a uridine-rich enhancer element in all cell types tested except differentiated chondrocytes; 2) an adenine-rich silencer element, and 3) an enhancer cis element functional in the context of secondary structure. This is the first report identifying key cis elements in the COL2A1 gene that modulate the cell type-specific alternative splicing switch of exon 2 during cartilage development.


Journal of Biological Chemistry | 2007

Nuclear Protein TIA-1 Regulates COL2A1 Alternative Splicing and Interacts with Precursor mRNA and Genomic DNA

Audrey McAlinden; Li Liang; Yoshiki Mukudai; Toshihiro Imamura; Linda J. Sandell

The RNA-binding protein TIA-1 (T-cell-restricted intracellular antigen-1) functions in regulating post-transcriptional mechanisms, including precursor mRNA (pre-mRNA) alternative splicing and mRNA translation. Utilizing a mini-gene consisting of part of the type II procollagen gene (COL2A1), we show that TIA-1 interacts with a conserved AU-rich cis element in COL2A1 intron 2 and modulates alternative splicing of exon 2. This unique, highly conserved cis element containing stem-loop secondary structure was previously identified in our laboratory as an essential motif that controls the developmentally regulated exon 2 splicing switch during chondrogenesis (McAlinden, A., Havlioglu, N., Liang, L., Davies, S. R., and Sandell, L. J. (2005) J. Biol. Chem. 280, 32700-32711). In vivo binding of endogenous TIA-1 to the AU-rich cis element in COL2A1 pre-mRNA was confirmed by the ribonucleoprotein immunoprecipitation assay. Importantly, we also show that TIA-1 interacts with the equivalent DNA sequence with a preference for single-stranded rather than double-stranded DNA. Chromatin immunoprecipitation assays (including an additional RNase step) confirmed this interaction in vivo. Competition assays showed that TIA-1 apparently binds with higher affinity to DNA than to RNA. Finally, we show that this strong DNA-TIA-1 interaction can be disrupted by an RNA polymerase during active transcription. This suggests a potentially novel, dual role for TIA-1 in shuttling between DNA and RNA ligands to co-regulate COL2A1 expression at the level of transcription and pre-mRNA alternative splicing.


Biomaterials | 2011

Changes of chondrocyte expression profiles in human MSC aggregates in the presence of PEG microspheres and TGF-β3

Soumya Ravindran; Jacob L. Roam; Peter K. Nguyen; Thomas M. Hering; Donald L. Elbert; Audrey McAlinden

Biomaterial microparticles are commonly utilized as growth factor delivery vehicles to induce chondrogenic differentiation of mesenchymal stem/stromal cells (MSCs). To address whether the presence of microparticles could themselves affect differentiation of MSCs, a 3D co-aggregate system was developed containing an equal volume of human primary bone marrow-derived MSCs and non-degradable RGD-conjugated poly(ethylene glycol) microspheres (PEG-μs). Following TGF-β3 induction, differences in cell phenotype, gene expression and protein localization patterns were found when compared to MSC aggregate cultures devoid of PEG-μs. An outer fibrous layer always found in differentiated MSC aggregate cultures was not formed in the presence of PEG-μs. Type II collagen protein was synthesized by cells in both culture systems, although increased levels of the long (embryonic) procollagen isoforms were found in MSC/PEG-μs aggregates. Ubiquitous deposition of type I and type X collagen proteins was found in MSC/PEG-μs cultures while the expression patterns of these collagens was restricted to specific areas in MSC aggregates. These findings show that MSCs respond differently to TGF-β3 when in a PEG-μs environment due to effects of cell dilution, altered growth factor diffusion and/or cellular interactions with the microspheres. Although not all of the expression patterns pointed toward improved chondrogenic differentiation in the MSC/PEG-μs cultures, the surprisingly large impact of the microparticles themselves should be considered when designing drug delivery/scaffold strategies.


Journal of Orthopaedic Research | 2011

Effects of botulinum toxin-induced paralysis on postnatal development of the supraspinatus muscle.

Rosalina Das; Jason T. Rich; H. Mike Kim; Audrey McAlinden; Stavros Thomopoulos

The mechanical environment plays an important role in musculoskeletal tissue development. The present study characterized changes in supraspinatus muscle due to removal of mechanical cues during postnatal development. An intramuscular injection of botulinum toxin type A (BTX) was used to induce and maintain paralysis in the left shoulders of mice since birth while the right shoulders received saline and served as contralateral controls. A separate group of animals was allowed to develop normally without any injections. Muscles were examined postnatally at various time points. The maximum isometric tetanic force generated by the muscle was significantly reduced in the BTX group compared to saline and normal groups. The paralyzed muscles were smaller and showed significant muscle atrophy and fat accumulation on histologic evaluation. Myogenic genes myogenin, myoD1, myf5, myf6, and fast type II myosin heavy chain (MHC) isoform were significantly upregulated while slow type I MHC isoform was significantly downregulated in the BTX group. Adipogenic genes C/EBPα, PPARγ2, leptin, and lipoprotein lipase were significantly upregulated in the BTX group. Results indicate that reduced muscle loading secondary to BTX‐induced paralysis leads to fat accumulation and muscle degeneration in the developing muscle. Understanding the molecular and compositional changes in developing supraspinatus muscles may be useful for identifying and addressing the pathological changes that occur in shoulder injuries such as neonatal brachial plexus palsy.


Biochemical and Biophysical Research Communications | 2008

Upregulation of Runx2 and Osterix during in vitro chondrogenesis of human adipose-derived stromal cells

Jason T. Rich; Ivana Rosová; Jan A. Nolta; Terence M. Myckatyn; Linda J. Sandell; Audrey McAlinden

The aim of this study was to create a gene expression profile to better define the phenotype of human adipose-derived stromal cells (HADSCs) during in vitro chondrogenesis, osteogenesis and adipogenesis. A novel aspect of this work was the analysis of the same subset of genes during HADSC differentiation into all three lineages. Chondrogenic induction resulted in increased mRNA expression of Sox transcription factors, COL2A1,COL10A1, Runx2, and Osterix. This is the first report demonstrating significant upregulation in expression of osteogenesis-related transcription factors Runx2 and Osterix by TGF-beta3 induction of HADSCs during in vitro chondrogenesis. These findings suggest that the commonly-used chondrogenic induction reagents promote differentiation suggestive of hypertrophic chondrocytes and osteoblasts. We conclude that alternative strategies are required to induce efficient articular chondrocyte differentiation in order for HADSCs to be of clinical use in cartilage tissue engineering.


PLOS ONE | 2013

Differentially Expressed MicroRNAs in Chondrocytes from Distinct Regions of Developing Human Cartilage

Audrey McAlinden; Nobish Varghese; Louisa Wirthlin; Li-Wei Chang

There is compelling in vivo evidence from reports on human genetic mutations and transgenic mice that some microRNAs (miRNAs) play an important functional role in regulating skeletal development and growth. A number of published in vitro studies also point toward a role for miRNAs in controlling chondrocyte gene expression and differentiation. However, information on miRNAs that may regulate a specific phase of chondrocyte differentiation (i.e. production of progenitor, differentiated or hypertrophic chondrocytes) is lacking. To attempt to bridge this knowledge gap, we have investigated miRNA expression patterns in human embryonic cartilage tissue. Specifically, a developmental time point was selected, prior to endochondral ossification in the embryonic limb, to permit analysis of three distinct populations of chondrocytes. The location of chondroprogenitor cells, differentiated chondrocytes and hypertrophic chondrocytes in gestational day 54–56 human embryonic limb tissue sections was confirmed both histologically and by specific collagen expression patterns. Laser capture microdissection was utilized to separate the three chondrocyte populations and a miRNA profiling study was carried out using TaqMan® OpenArray® Human MicroRNA Panels (Applied Biosystems®). Here we report on abundantly expressed miRNAs in human embryonic cartilage tissue and, more importantly, we have identified miRNAs that are significantly differentially expressed between precursor, differentiated and hypertrophic chondrocytes by 2-fold or more. Some of the miRNAs identified in this study have been described in other aspects of cartilage or bone biology, while others have not yet been reported in chondrocytes. Finally, a bioinformatics approach was applied to begin to decipher developmental cellular pathways that may be regulated by groups of differentially expressed miRNAs during distinct stages of chondrogenesis. Data obtained from this work will serve as an important resource of information for the field of cartilage biology and will enhance our understanding of miRNA-driven mechanisms regulating cartilage and endochondral bone development, regeneration and repair.


G3: Genes, Genomes, Genetics | 2013

Molecular insight into the association between cartilage regeneration and ear wound healing in genetic mouse models: Targeting new genes in regeneration

Muhammad Farooq Rai; Eric J. Schmidt; Audrey McAlinden; James M. Cheverud; Linda J. Sandell

Tissue regeneration is a complex trait with few genetic models available. Mouse strains LG/J and MRL are exceptional healers. Using recombinant inbred strains from a large (LG/J, healer) and small (SM/J, nonhealer) intercross, we have previously shown a positive genetic correlation between ear wound healing, knee cartilage regeneration, and protection from osteoarthritis. We hypothesize that a common set of genes operates in tissue healing and articular cartilage regeneration. Taking advantage of archived histological sections from recombinant inbred strains, we analyzed expression of candidate genes through branched-chain DNA technology directly from tissue lysates. We determined broad-sense heritability of candidates, Pearson correlation of candidates with healing phenotypes, and Ward minimum variance cluster analysis for strains. A bioinformatic assessment of allelic polymorphisms within and near candidate genes was also performed. The expression of several candidates was significantly heritable among strains. Although several genes correlated with both ear wound healing and cartilage healing at a marginal level, the expression of four genes representing DNA repair (Xrcc2, Pcna) and Wnt signaling (Axin2, Wnt16) pathways was significantly positively correlated with both phenotypes. Cluster analysis accurately classified healers and nonhealers for seven out of eight strains based on gene expression. Specific sequence differences between LG/J and SM/J were identified as potential causal polymorphisms. Our study suggests a common genetic basis between tissue healing and osteoarthritis susceptibility. Mapping genetic variations causing differences in diverse healing responses in multiple tissues may reveal generic healing processes in pursuit of new therapeutic targets designed to induce or enhance regeneration and, potentially, protection from osteoarthritis.


Journal of Biological Chemistry | 2002

Trimerization of the Amino Propeptide of Type IIA Procollagen Using a 14-Amino Acid Sequence Derived from the Coiled-Coil Neck Domain of Surfactant Protein D

Audrey McAlinden; Erika C. Crouch; James G. Bann; Pengnian Zhang; Linda J. Sandell

The folding of a collagen triple helix usually requires the presence of additional sequences that contribute to the association and correct alignment of the collagen chains. We recently reported that the C-terminal neck and lectin domains of a collagenous C-type lectin, rat pulmonary surfactant protein D (SP-D), are sufficient to drive the trimerization of a heterologous type IIA procollagen amino propeptide sequence. However, the conformation of the resulting trimeric IIA propeptide and the specific contributions of the SP-D sequence to trimerization were not elucidated. In the present study, we show that trimerization of the fusion protein is associated with correct folding of the collagen helix within the IIA propeptide domain (as assessed by circular dichroism) and that the constituent chains are hydroxylated. Chemical cross-linking and analytical ultracentrifugation showed that the IIA amino-propeptide retains its trimeric configuration even after proteolytic removal of the SP-D domains. By contrast, IIA amino-propeptides synthesized without fusion to the neck or lectin domains are assembled exclusively as monomers. To localize the trimerization sequence, mutant chimeric cDNA constructs were designed containing premature termination codons within the coiled-coil neck domain. A short, 14-amino acid sequence corresponding to the first two heptad repeats of the neck domain was sufficient to drive the trimeric association of the IIA amino-propeptide α-chains. However, deletion of the collagen domain resulted in the secretion of monomers. These studies demonstrate that two heptad repeats are sufficient for trimeric association of the propeptide but indicate that cooperative interactions between the coiled-coil and collagen domains are required for the formation of a stable helix.

Collaboration


Dive into the Audrey McAlinden's collaboration.

Top Co-Authors

Avatar

Linda J. Sandell

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Soumya Ravindran

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Louisa Wirthlin

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Thomas M. Hering

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Erika C. Crouch

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Jason T. Rich

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Jie Shen

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Li Liang

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Regis J. O'Keefe

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge