Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Audrey Vardy is active.

Publication


Featured researches published by Audrey Vardy.


Neuroscience | 2006

Neuroactive steroids and inhibitory neurotransmission: mechanisms of action and physiological relevance.

Delia Belelli; Murray B. Herd; Elizabeth Mitchell; Dianne R. Peden; Audrey Vardy; Luc J. Gentet; Jeremy J. Lambert

Dysfunction of GABA(A) receptor-mediated inhibition is implicated in a number of neurological and psychiatric conditions including epilepsy and affective disorders. Some of these conditions have been associated with abnormal levels of certain endogenously occurring neurosteroids, which potently and selectively enhance the function of the brains major inhibitory receptor, the GABA(A) receptor. Consistent with their ability to enhance neuronal inhibition, such steroids exhibit in animals and humans anxiolytic, anticonvulsant and anesthetic actions. Neurosteroids, exemplified by the potent progesterone metabolite, 5alpha-pregnan-3alpha-ol-20-one can be synthesized de novo in the CNS both in neurones and glia in levels sufficient to modulate GABA(A) receptor function. Neurosteroid levels are not static, but are subject to dynamic fluctuations, for example during stress, or the later stages of pregnancy. These observations suggest that these endogenous modulators may refine the function of the brains major inhibitory receptor and thus, play an important physiological and pathophysiological role. However, given the ubiquitous expression of GABA(A) receptors throughout the mammalian CNS, changes in neurosteroid levels should be widely experienced, causing a generalized enhancement of neuronal inhibition. Such a non-specific action would seem incompatible with a physiological role. However, neurosteroid action is both brain region and neurone selective. This specificity results from a variety of molecular mechanisms including receptor subunit composition, local steroid metabolism and phosphorylation. This paper will evaluate the relative contribution these mechanisms play in defining the interaction of neurosteroids with synaptic and extra-synaptic GABA(A) receptors.


Toxicology and Applied Pharmacology | 2013

An integrated approach for prospectively investigating a mode-of-action for rodent liver effects

Matthew J. LeBaron; David R. Geter; Reza J. Rasoulpour; B. Bhaskar Gollapudi; Johnson Thomas; Jennifer Murray; H. Lynn Kan; Amanda J. Wood; Cliff Elcombe; Audrey Vardy; Jillian McEwan; Claire Terry; Richard Billington

Registration of new plant protection products (e.g., herbicide, insecticide, or fungicide) requires comprehensive mammalian toxicity evaluation including carcinogenicity studies in two species. The outcome of the carcinogenicity testing has a significant bearing on the overall human health risk assessment of the substance and, consequently, approved uses for different crops across geographies. In order to understand the relevance of a specific tumor finding to human health, a systematic, transparent, and hypothesis-driven mode of action (MoA) investigation is, appropriately, an expectation by the regulatory agencies. Here, we describe a novel approach of prospectively generating the MoA data by implementing additional end points to the standard guideline toxicity studies with sulfoxaflor, a molecule in development. This proactive MoA approach results in a more robust integration of molecular with apical end points while minimizing animal use. Sulfoxaflor, a molecule targeting sap-feeding insects, induced liver effects (increased liver weight due to hepatocellular hypertrophy) in an initial palatability probe study for selecting doses for subsequent repeat-dose dietary studies. This finding triggered the inclusion of dose-response investigations of the potential key events for rodent liver carcinogenesis, concurrent with the hazard assessment studies. As predicted, sulfoxaflor induced liver tumors in rats and mice in the bioassays. The MoA data available by the time of the carcinogenicity finding supported the conclusion that the carcinogenic potential of sulfoxaflor was due to CAR/PXR nuclear receptor activation with subsequent hepatocellular proliferation. This MoA was not considered to be relevant to humans as sulfoxaflor is unlikely to induce hepatocellular proliferation in humans and therefore would not be a human liver carcinogen.


Toxicology Letters | 2017

Mode of action and human relevance of THF-induced mouse liver tumors

Christopher J. Choi; Erik K. Rushton; Audrey Vardy; Larry G. Higgins; Andrea Augello; Ralph J. Parod

In a National Toxicology Program (NTP) bioassay, inhalation of tetrahydrofuran (THF) induced liver tumors in female B6C3F1 mice but not in male mice or rats of either sex. Since THF is not genotoxic, the NTP concluded this carcinogenic activity was likely mediated via non-genotoxic modes of action (MOA). Based on evidence that THF and phenobarbital share a similar MOA, female Car/Pxr knock-out mice were orally exposed to THF to evaluate the potential role of CAR activation in the MOA for THF-induced liver tumors. Because data from this oral study with Car/Pxr knock-out mice (C57Bl/6) and the inhalation studies with wild type mice (B6C3F1) reported by NTP and others were derived from different strains, oral studies with wild type B6C3F1 and C57Bl/6 mice were conducted to ensure THF responses in both strains were comparable. As seen in inhalation studies with THF, oral exposure of wild type female mice to a maximum tolerated dose of THF increased total P450 content, CAR-related P450 activities, and hepatocyte proliferation; these effects were not observed in Car/Pxr knock-out female mice. This finding supports the hypothesis THF-induced carcinogenicity is likely mediated via CAR activation that has limited, if any, relevance to humans.


Toxicology | 2018

Comparison of the effects of sodium phenobarbital in wild type and humanized constitutive androstane receptor (CAR)/pregnane X receptor (PXR) mice and in cultured mouse, rat and human hepatocytes

Corinne Haines; Barbara M. Elcombe; Lynsey Chatham; Audrey Vardy; Larry G. Higgins; Clifford R. Elcombe; Brian G. Lake

Phenobarbital (PB), a constitutive androstane receptor (CAR) activator, produces liver tumours in rodents by a mitogenic mode of action involving CAR activation. In this study, the hepatic effects of sodium phenobarbital (NaPB) were compared in male C57BL/6J wild type (WT) mice and in humanized mice, where both the mouse CAR and pregnane X receptor (PXR) have been replaced by their human counterparts (hCAR/hPXR mice). Investigations were also performed in cultured male C57BL/6J and CD-1 mouse, male Sprague-Dawley rat and male and female human hepatocytes. The treatment of WT and hCAR/hPXR mice with 186-984 ppm NaPB in the diet for 7 days resulted in increased relative liver weight, hypertrophy and induction of cytochrome P450 (CYP) enzyme activities. Treatment with NaPB also produced dose-dependent increases in hepatocyte replicative DNA synthesis (RDS), with the effect being more marked in WT than in hCAR/hPXR mice. While the treatment of cultured C57BL/6J and CD-1 mouse, Sprague-Dawley rat and human hepatocytes with 100 and/or 1000 μM NaPB for 4 days induced CYP enzyme activities, increased RDS was only observed in mouse and rat hepatocytes. However, as a positive control, epidermal growth factor increased RDS in hepatocytes from all three species. In summary, although human hepatocytes are refractory to the mitogenic effects of NaPB, treatment with NaPB induced RDS in vivo in hCAR/hPXR mice, which is presumably due to the human CAR and PXR receptors operating in a mouse hepatocyte regulatory environment. As the response of the hCAR/hPXR mouse to the CAR activator NaPB differs markedly from that of human hepatocytes, the hCAR/hPXR mouse is thus not a suitable animal model for studies on the hepatic effects of nongenotoxic rodent CAR activators.


Xenobiotica | 2018

Metabolism of deltamethrin and cis- and trans-permethrin by rat and human liver microsomes, liver cytosol and plasma preparations

Laura Hedges; Susan Brown; Audrey Vardy; Edward Doyle; Miyoung Yoon; Thomas G. Osimitz; Brian G. Lake

Abstract The metabolism of deltamethrin (DLM), cis-permethrin (CPM) and trans-permethrin (TPM) was studied in liver microsomes, liver cytosol and plasma from male Sprague–Dawley rats aged 15, 21 and 90 days and from adult humans. DLM and CPM were metabolised by rat hepatic microsomal cytochrome P450 (CYP) enzymes and to a lesser extent by microsomal and cytosolic carboxylesterase (CES) enzymes, whereas TPM was metabolised to a greater extent by CES enzymes. In human liver, DLM and TPM were mainly metabolised by CES enzymes, whereas CPM was metabolised by CYP and CES enzymes. The metabolism of pyrethroids by cytosolic CES enzymes contributes to the overall hepatic clearance of these compounds. DLM, CPM and TPM were metabolised by rat, but not human, plasma CES enzymes. This study demonstrates that the ability of male rats to metabolise DLM, CPM and TPM by hepatic CYP and CES enzymes and plasma CES enzymes increases with age. In all instances, apparent intrinsic clearance values were lower in 15 than in 90 day old rats. As pyrethroid-induced neurotoxicity is due to the parent compound, these results suggest that DLM, CPM and TPM may be more neurotoxic to juvenile than to adult rats.


Xenobiotica | 2018

Comparison of the hepatic and thyroid gland effects of sodium phenobarbital and pregnenolone-16α-carbonitrile in wild-type and constitutive androstane receptor (CAR)/pregnane X receptor (PXR) knockout rats

Corinne Haines; Lynsey Chatham; Audrey Vardy; Clifford R. Elcombe; John R. Foster; Brian G. Lake

Abstract The hepatic and thyroid gland effects of the constitutive androstane receptor (CAR) activator sodium phenobarbital (NaPB) and the pregnane X receptor (PXR) activator pregnenolone-16α-carbonitrile (PCN) were examined in male Sprague-Dawley wild-type (WT) and knockout (KO) rats lacking both hepatic CAR and PXR receptors (CAR KO/PXR KO rats). The treatment of WT rats for 7 d with 500 ppm NaPB in the diet and 100 mg/kg/d PCN by gavage resulted in increased relative liver weight, hepatocyte hypertrophy, increased hepatocyte replicative DNA synthesis (RDS) and induction of cytochrome P450 CYP2B and CYP3A subfamily enzymes. NaPB and PCN also induced thyroid gland follicular cell RDS and hepatic microsomal UDP-glucuronosyltransferase activity towards thyroxine as substrate. These effects were not observed in the liver and thyroid gland of CAR KO/PXR KO rats. Male C57BL/6 J (WT) and CAR KO/PXR KO mice were given 1000 ppm NaPB in the diet for 7 d. In WT, but not in CAR KO/PXR KO, mice NaPB treatment resulted in liver hypertrophy and induction of hepatocyte RDS and Cyp2b enzymes. These results suggest that the CAR KO/PXR KO rat and mouse models are useful experimental models for mode of action studies with rodent CAR activators.


Xenobiotica | 2018

Metabolism of deltamethrin and cis- and trans-permethrin by human expressed cytochrome P450 and carboxylesterase enzymes

Laura Hedges; Susan Brown; A. Kenneth MacLeod; Audrey Vardy; Edward Doyle; Gina Song; Marjory Moreau; Miyoung Yoon; Thomas G. Osimitz; Brian G. Lake

Abstract The metabolism of the pyrethroids deltamethrin (DLM), cis-permethrin (CPM) and trans-permethrin (TPM) was studied in human expressed cytochrome P450 (CYP) and carboxylesterase (CES) enzymes. DLM, CPM and TPM were metabolised by human CYP2B6 and CYP2C19, with the highest apparent intrinsic clearance (CLint) values for pyrethroid metabolism being observed with CYP2C19. Other CYP enzymes contributing to the metabolism of one or more of the three pyrethroids were CYP1A2, CYP2C8, CYP2C9*1, CYP2D6*1, CYP3A4 and CYP3A5. None of the pyrethroids were metabolised by CYP2A6, CYP2E1, CYP3A7 or CYP4A11. DLM, CPM and TPM were metabolised by both human CES1 and CES2 enzymes. Apparent CLint values for pyrethroid metabolism by CYP and CES enzymes were scaled to per gram of adult human liver using abundance values for microsomal CYP enzymes and for CES enzymes in liver microsomes and cytosol. TPM had the highest and CPM the lowest apparent CLint values for total metabolism (CYP and CES enzymes) per gram of adult human liver. Due to their higher abundance, all three pyrethroids were extensively metabolised by CES enzymes in adult human liver, with CYP enzymes only accounting for 2%, 10% and 1% of total metabolism for DLM, CPM and TPM, respectively.


Toxicology | 2018

Comparison of the hepatic and thyroid gland effects of sodium phenobarbital in wild type and constitutive androstane receptor (CAR) knockout rats and pregnenolone-16α-carbonitrile in wild type and pregnane X receptor (PXR) knockout rats

Corinne Haines; Lynsey Chatham; Audrey Vardy; Clifford R. Elcombe; John R. Foster; Brian G. Lake

A number of chemicals produce liver and thyroid gland tumours in rodents by nongenotoxic modes of action (MOAs). In this study the hepatic and thyroid gland effects of the constitutive androstane receptor (CAR) activator sodium phenobarbital (NaPB) were examined in male Sprague-Dawley wild type (WT) rats and in CAR knockout (CAR KO) rats and the effects of the pregnane X receptor (PXR) activator pregnenolone-16α-carbonitrile (PCN) were examined in WT and PXR knockout (PXR KO) rats. Rats were either fed diets containing 0 (control) or 500 ppm NaPB or were dosed with 0 (control) or 100 mg/kg/day PCN orally for 7 days. The treatment of WT rats with NaPB and PCN for 7 days resulted in increased relative liver weight, increased hepatocyte replicative DNA synthesis (RDS) and the induction of cytochrome P450 CYP2B and CYP3A subfamily enzyme, mRNA and protein levels. In marked contrast, the treatment of CAR KO rats with NaPB and PXR KO rats with PCN did not result in any increases in liver weight and induction of CYP2B and CYP3A enzymes. The treatment of CAR KO rats with NaPB had no effect on hepatocyte RDS, while PCN produced only a small increase in hepatocyte RDS in PXR KO rats. Treatment with NaPB had no effect on thyroid gland weight in WT and CAR KO rats, whereas treatment with PCN resulted in an increase in relative thyroid gland weight in WT, but not in PXR KO, rats. Thyroid gland follicular cell RDS was increased by the treatment of WT rats with NaPB and PCN, with NaPB also producing a small increase in thyroid gland follicular cell RDS in CAR KO rats. Overall, the present study with CAR KO rats demonstrates that a functional CAR is required for NaPB-mediated increases in liver weight, stimulation of hepatocyte RDS and induction of hepatic CYP enzymes. The studies with PXR KO rats demonstrate that a functional PXR is required for PCN-mediated increases in liver weight and induction of hepatic CYP enzymes; with induction of hepatocyte RDS also being largely mediated through PXR. The hepatic effects of NaPB in CAR KO rats and of PCN in PXR KO rats are in agreement with those observed in other recent literature studies. These results suggest that CAR KO and PXR KO rats are useful experimental models for liver MOA studies with rodent CAR and PXR activators and may also be useful for thyroid gland MOA studies.


Progress in Neurobiology | 2003

Neurosteroid modulation of GABAA receptors

Jeremy J. Lambert; Delia Belelli; Dianne R. Peden; Audrey Vardy; John A. Peters


Progress in Neurobiology | 2003

Neurosteroid modulation of GABA A receptors

Jeremy J. Lambert; Delia Belelli; Dianne R. Peden; Audrey Vardy; John A. Peters

Collaboration


Dive into the Audrey Vardy's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge