Larry G. Higgins
University of Dundee
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Larry G. Higgins.
Journal of Nutrition | 2004
Gail K. McWalter; Larry G. Higgins; Lesley I. McLellan; Colin J. Henderson; Lijiang Song; Paul J. Thornalley; Ken Itoh; Masayuki Yamamoto; John D. Hayes
Cruciferous vegetables contain glucosinolates that, after conversion to isothiocyanates (ITC), are capable of inducing cytoprotective genes. We examined whether broccoli seeds can elicit a chemoprotective response in mouse organs and rodent cell lines and investigated whether this response requires nuclear factor-erythroid 2 p45-related factor 2 (Nrf2). The seeds studied contained glucosinolate at 40 mmol/kg, of which 59% comprised glucoiberin, 19% sinigrin, 8% glucoraphanin, and 7% progoitrin. Dietary administration of broccoli seeds to nrf2(+/+) and nrf2(-/-) mice produced a approximately 1.5-fold increase in NAD(P)H:quinone oxidoreductase 1 (NQO1) and glutathione S-transferase (GST) activities in stomach, small intestine, and liver of wild-type mice but not in mutant mice; increased transferase activity was associated with elevated levels of GSTA1/2, GSTA3, and GSTM1/2 subunits. These seeds also increased significantly the level of glutamate cysteine ligase catalytic (GCLC) subunit in the stomach and the small intestine of nrf2(+/+) mice but not nrf2(-/-) mice. An aqueous broccoli seed extract was prepared for treatment of cultured cells that contained ITC at approximately 600 mumol/L, composed of 61% 3-methylsulfinylpropyl ITC, 30% sulforaphane, 4% allyl ITC, and 4% 3-butenyl ITC. This extract induced GSTA1/2, GSTA3, NQO1, and GCLC between 3-fold and 10-fold in mouse Hepa-1c1c7 and rat liver RL-34 cells. The broccoli seed extract affected increases in GSTA3, GSTM1, and NQO1 proteins in nrf2(+/+) mouse embryonic fibroblasts but not in nrf2(-/-) mouse embryonic fibroblasts. These experiments show that broccoli seeds are effective at inducing antioxidant and detoxication proteins, both in vivo and ex vivo, in an Nrf2-dependent manner.
Drug Metabolism Reviews | 2011
Larry G. Higgins; John D. Hayes
Glutathione transferase (GST) isoezymes are encoded by three separate families of genes (designated cytosolic, microsomal and mitochondrial transferases), with distinct evolutionary origins, that provide mammalian species with protection against electrophiles and oxidative stressors in the environment. Members of the cytosolic class Alpha, Mu, Pi and Theta GST, and also certain microsomal transferases (MGST2 and MGST3), are up-regulated by a diverse spectrum of foreign compounds typified by phenobarbital, 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene, pregnenolone-16α-carbonitrile, 3-methylcholanthrene, 2,3,7,8-tetrachloro-dibenzo-p-dioxin, β-naphthoflavone, butylated hydroxyanisole, ethoxyquin, oltipraz, fumaric acid, sulforaphane, coumarin, 1-[2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oyl]imidazole, 12-O-tetradecanoylphorbol-13-acetate, dexamethasone and thiazolidinediones. Collectively, these compounds induce gene expression through the constitutive androstane receptor (CAR), the pregnane X receptor (PXR), the aryl hydrocarbon receptor (AhR), NF-E2-related factor 2 (Nrf2), peroxisome proliferator-activated receptor-γ (PPARγ) and CAATT/enhancer binding protein (C/EBP) β. The microsomal T family includes 5-lipoxygenase activating protein (FLAP), leukotriene C4 synthase (LTC4S) and prostaglandin E2 synthase (PGES-1), and these are up-regulated by tumour necrosis factor-α, lipopolysaccharide and transforming growth factor-β. Induction of genes encoding FLAP, LTC4S and PGES-1 is mediated by the transcription factors C/EBPα, C/EBPδ, C/EBPϵ, nuclear factor-κB and early growth response-1. In this article we have reviewed the literature describing the mechanisms by which cytosolic and microsomal GST are up-regulated by xenobiotics, drugs, cytokines and endotoxin. We discuss cross-talk between the different induction mechanisms, and have employed bioinformatics to identify cis-elements in the upstream regions of GST genes to which the various transcription factors mentioned above may be recruited.
Toxicology and Applied Pharmacology | 2009
Larry G. Higgins; Michael O. Kelleher; Ian M. Eggleston; Ken Itoh; Masayuki Yamamoto; John D. Hayes
Sulforaphane can stimulate cellular adaptation to redox stressors through transcription factor Nrf2. Using mouse embryonic fibroblasts (MEFs) as a model, we show herein that the normal homeostatic level of glutathione in Nrf2(-/-) MEFs was only 20% of that in their wild-type counterparts. Furthermore, the rate of glutathione synthesis following its acute depletion upon treatment with 3 micromol/l sulforaphane was very substantially lower in Nrf2(-/-) MEFs than in wild-type cells, and the rebound leading to a approximately 1.9-fold increase in glutathione that occurred 12-24 h after Nrf2(+/+) MEFs were treated with sulforaphane was not observed in Nrf2(-/-) fibroblasts. Wild-type MEFs that had been pre-treated for 24 h with 3 micromol/l sulforaphane exhibited between 1.4- and 3.2-fold resistance against thiol-reactive electrophiles, including isothiocyanates, alpha,beta-unsaturated carbonyl compounds (e.g. acrolein), aryl halides and alkene epoxides. Pre-treatment of Nrf2(+/+) MEFs with sulforaphane also protected against hydroperoxides (e.g. cumene hydroperoxide, CuOOH), free radical-generating compounds (e.g. menadione), and genotoxic electrophiles (e.g. chlorambucil). By contrast, Nrf2(-/-) MEFs were typically approximately 50% less tolerant of these agents than wild-type fibroblasts, and sulforaphane pre-treatment did not protect the mutant cells against xenobiotics. To test whether Nrf2-mediated up-regulation of glutathione represents the major cytoprotective mechanism stimulated by sulforaphane, 5 micromol/l buthionine sulfoximine (BSO) was used to inhibit glutathione synthesis. In Nrf2(+/+) MEFs pre-treated with sulforaphane, BSO diminished intrinsic resistance and abolished inducible resistance to acrolein, CuOOH and chlorambucil, but not menadione. Thus Nrf2-dependent up-regulation of GSH is the principal mechanism by which sulforaphane pre-treatment induced resistance to acrolein, CuOOH and chlorambucil, but not menadione.
Journal of Proteomics | 2010
Neil R. Kitteringham; Azman Abdullah; Joanne Walsh; Laura E. Randle; Rosalind E. Jenkins; Rowena L. Sison; Christopher E. Goldring; Helen Powell; Christopher M. Sanderson; Samantha Williams; Larry G. Higgins; Masayuki Yamamoto; John D. Hayes; B. Kevin Park
The transcription factor Nrf2 regulates expression of multiple cellular defence proteins through the antioxidant response element (ARE). Nrf2-deficient mice (Nrf2−/−) are highly susceptible to xenobiotic-mediated toxicity, but the precise molecular basis of enhanced toxicity is unknown. Oligonucleotide array studies suggest that a wide range of gene products is altered constitutively, however no equivalent proteomics analyses have been conducted. To define the range of Nrf2-regulated proteins at the constitutive level, protein expression profiling of livers from Nrf2−/− and wild type mice was conducted using both stable isotope labelling (iTRAQ) and gel electrophoresis methods. To establish a robust reproducible list of Nrf2-dependent proteins, three independent groups of mice were analysed. Correlative network analysis (MetaCore) identified two predominant groups of Nrf2-regulated proteins. As expected, one group comprised proteins involved in phase II drug metabolism, which were down-regulated in the absence of Nrf2. Surprisingly, the most profound changes were observed amongst proteins involved in the synthesis and metabolism of fatty acids and other lipids. Importantly, we show here for the first time, that the enzyme ATP-citrate lyase, responsible for acetyl-CoA production, is negatively regulated by Nrf2. This latter finding suggests that Nrf2 is a major regulator of cellular lipid disposition in the liver.
Journal of Neurochemistry | 2008
Francesc X. Soriano; Frédéric Léveillé; Sofia Papadia; Larry G. Higgins; James Varley; Paul Baxter; John D. Hayes; Giles E. Hardingham
Peroxiredoxins are an important family of cysteine‐based antioxidant enzymes that exert a neuroprotective effect in several models of neurodegeneration. However, under oxidative stress they are vulnerable to inactivation through hyperoxidation of their active site cysteine residues. We show that in cortical neurons, the chemopreventive inducer 3H‐1,2‐dithiole‐3‐thione (D3T), that activates the transcription factor Nuclear factor erythroid 2‐related factor (Nrf2), inhibits the formation of inactivated, hyperoxidized peroxiredoxins following oxidative trauma, and protects neurons against oxidative stress. In both neurons and glia, Nrf2 expression and treatment with chemopreventive Nrf2 activators, including D3T and sulforaphane, up‐regulates sulfiredoxin, an enzyme responsible for reducing hyperoxidized peroxiredoxins. Induction of sulfiredoxin expression is mediated by Nrf2, acting via a cis‐acting antioxidant response element (ARE) in its promoter. The ARE element in Srxn1 contains an embedded activator protein‐1 (AP‐1) site which directs induction of Srxn1 by synaptic activity. Thus, raising Nrf2 activity in neurons prevents peroxiredoxin hyperoxidation and induces a new member of the ARE‐gene family, whose enzymatic function of reducing hyperoxidized peroxiredoxins may contribute to the neuroprotective effects of Nrf2 activators.
Chemistry & Biology | 2010
Xiu Jun Wang; John D. Hayes; Larry G. Higgins; C. Roland Wolf; Albena T. Dinkova-Kostova
Transcription factor NF-E2 p45-related factor 2 (Nrf2) mediates adaptation to oxidants and electrophiles through up-regulating genes that contain antioxidant response elements (AREs) in their promoters. Using the stably transfected human AREc32 reporter cell line, we found that copper and other transition metals enhanced induction of ARE-driven luciferase by 2-tert-butyl-1,4-hydroquinone (tBHQ) as a result of increased oxidation to 2-tert-butyl-1,4-benzoquinone (tBQ). Following exposure to tBHQ for 30 min, ARE-luciferase activity measured after 24 hr was dependent on the presence of Cu(2+). In contrast, tBQ-induced activity was Cu(2+)-independent. The metal-catalyzed oxidation of tBHQ to tBQ occured rapidly and stoichiometrically. Compounds that share para- or ortho-hydroquinone structures, such as catechol estrogens, dopamine, and l-DOPA, also induced ARE-driven luciferase in a Cu(2+)-dependent manner. Thus, the oxidation of para- and ortho-hydroquinones to quinones represents the rate-limiting step in the activation of Nrf2.
Chemico-Biological Interactions | 2011
Larry G. Higgins; John D. Hayes
Transcription factor Nrf2 regulates genes encoding drug-metabolising enzymes and drug transporters, as well as enzymes involved in the glutathione, thioredoxin and peroxiredoxin antioxidant pathways. Using mouse embryonic fibroblast (MEF) cells from Nrf2(+/+) and Nrf2(-/-) mice, in conjunction with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cytotoxicity assay, we have shown that loss of Nrf2 diminishes the intrinsic resistance of mutant fibroblasts towards isothiocyanates (i.e. sulforaphane), epoxides (i.e. (2S,3S)-(-)-3-phenylglycidol, ethyl 3-phenylglycidate and styrene-7,8-epoxide), peroxides, hydroquinones and quinones (i.e. tert-butylhydroperoxide, tert-butylhydroquinone and 2,3-dimethoxynaphthoquinone), NaAsO(2), and various mutagens, including β-propiolactone, cisplatin, mechlorethamine and methyl methanesulfonate to ∼50% of that observed in equivalent wild-type cells. Exposure of Nrf2(+/+) fibroblasts, but not Nrf2(-/-) fibroblasts, to a non-toxic dose (3μmol/l) of the chemopreventive agent sulforaphane (Sul) stimulated an adaptive response that, 18h after first being subjected to the isothiocyanate, caused an induction of between 2- and 10-fold in the levels of mRNA for glutamate-cysteine ligase catalytic (Gclc) and modifier (Gclm) subunits, glutathione S-transferases and NAD(P)H:quinone oxidoreductase-1 (Nqo1); this was accompanied by an increase in total glutathione of between 1.5- and 1.9-fold. Pre-treatment of Nrf2(+/+) MEF cells with 3μM Sul for 18h prior to challenge with xenobiotics, conferred between 2.0- and 4.0-fold protection against isothiocyanates, reactive carbonyls, peroxides, quinones, NaAsO(2), and the anticancer nitrogen mustard chlorambucil, but pre-treatment with 3μM Sul produced no such increased tolerance in Nrf2(-/-) MEF cells. The inducible resistance towards acrolein, cumene hydroperoxide and chlorambucil, produced by pre-treating wild-type fibroblasts with 3μM Sul, was dependent on glutathione because simultaneous pre-treatment with 5μmol/l buthionine sulfoximine abolished the increased tolerance of these xenobiotics. However, inducible resistance towards menadione that occurred upon pre-treatment with 3μM Sul was independent of glutathione and may be due to upregulation of Nqo1. Thus Nrf2 controls cellular resistance against electrophiles.
Pharmacological Reports | 2012
Azman Abdullah; Neil R. Kitteringham; Rosalind E. Jenkins; Christopher E. Goldring; Larry G. Higgins; Masayuki Yamamoto; John D. Hayes; B. Kevin Park
BACKGROUND The transcription factor Nrf2 regulates expression of multiple cellular defence proteins through the antioxidant response element (ARE). Nrf2-deficient mice (Nrf2(-/-)) are highly susceptible to xenobiotic-mediated toxicity, but it is not known whether this reflects low basal expression or reduced inducibility of Nrf2-regulated genes in response to chemical insults. METHODS Wild type and Nrf2(-/-) mice were fed diet supplemented with the established Nrf2 inducer butylated hydroxyanisole (BHA) [0.5% (w/w)] for 14 days. To define the range of Nrf2-regulated proteins, both basally and following exposure to BHA, a comparison of the liver proteomes of Nrf2(-/-) and wild type mice was conducted. The two-dimensional gel electrophoresis (2-DE) technique and MALDI mass spectrometry were utilized in the attempt to define Nrf2-regulated proteins. RESULTS Overall, 24 proteins were identified, which were regulated either basally (3 proteins), inducibly (16 proteins), or both (5 proteins). These included several well-established Nrf2-driven gene products e.g., aldo-keto reductase and glutathione transferases. Multiple consensus ARE/ARE-like sequences were found in the Nrf2-regulated genes. CONCLUSIONS This study confirms the central role of Nrf2 in the induction of multiple defense proteins as well as its control in the constitutive expression of certain proteins.
Ppar Research | 2015
Wojciech Garbacz; Jeffrey T.-J. Huang; Larry G. Higgins; Walter Wahli; Colin N. A. Palmer
Peroxisome proliferator activated receptors alpha (PPARα) and delta (PPARδ) belong to the nuclear receptor superfamily. PPARα is a target of well established lipid-lowering drugs. PPARδ (also known as PPARβ/δ) has been investigated as a promising antidiabetic drug target; however, the evidence in the literature on PPARδ effect on hepatic lipid metabolism is inconsistent. Mice conditionally expressing human PPARδ demonstrated pronounced weight loss and promoted hepatic steatosis when treated with GW501516 (PPARδ-agonist) when compared to wild type mice. This effect was completely absent in mice with either a dominant negative form of PPARδ or deletion of the DNA binding domain of PPARδ. This confirmed the absolute requirement for PPARδ in the physiological actions of GW501516 and confirmed the potential utility against the human form of this receptor. Surprisingly the genetic deletion of PPARα also abrogated the effect of GW501516 in terms of both weight loss and hepatic lipid accumulation. Also the levels of the PPARα endogenous agonist 16:0/18:1-GPC were shown to be modulated by PPARδ in wild type mice. Our results show that both PPARδ and PPARα receptors are essential for GW501516-driven adipose tissue reduction and subsequently hepatic steatosis, with PPARα working downstream of PPARδ.
Drug Metabolism and Disposition | 2010
A. Kenneth MacLeod; Vincent P. Kelly; Larry G. Higgins; Michael O. Kelleher; Sally A. Price; Alison L. Bigley; Graham Betton; John D. Hayes
The aldo-keto reductase (AKR) phase I drug metabolism enzyme superfamily is implicated in detoxification or bioactivation of a wide variety of carbonyl-bearing compounds. In this study, we have used antibodies raised against purified recombinant rat AKR isoforms 1A3, 1B4, 1C9, 1D2, and 7A1 to characterize the expression profile of these superfamily members in the rat and define their localization by immunohistochemistry. Western blotting showed that AKR1A3, AKR1B4, and AKR1C9 are ubiquitously expressed, whereas AKR1D2 and AKR7A1 are present in liver, adrenal gland, and kidney, with the latter also present in testis, spleen, and stomach. Immunohistochemical analysis of the kidney demonstrated the localization of AKR1A3 in proximal convoluted tubules, AKR1B4 in the loop of Henle, and AKR1C9 in the pars recta S3 segment of proximal tubules. We also report localization of AKR1B4 in the adrenal gland (parenchymal cells of the zona reticularis) and testis (Sertoli cells and late spermatids), of AKR1D2 in the liver (hepatocyte nuclei), and of AKR7A1 in the pancreatic duct and bronchiolar epithelium. Previous studies have shown that expression of AKR7A1 is induced in response to dietary administration of the phenolic antioxidants butylated hydroxyanisole and ethoxyquin. Here we identify AKR1B13 and AKR1D2 as further inducible members of the rat AKR superfamily.