Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Audrey Varin is active.

Publication


Featured researches published by Audrey Varin.


Circulation Research | 2009

Decreased Expression and Activity of cAMP Phosphodiesterases in Cardiac Hypertrophy and Its Impact on β-Adrenergic cAMP Signals

Aniella Abi-Gerges; Wito Richter; Florence Lefebvre; Philippe Mateo; Audrey Varin; Christophe Heymes; Jane-Lise Samuel; Claire Lugnier; Marco Conti; Rodolphe Fischmeister; Grégoire Vandecasteele

Rationale: Multiple cyclic nucleotide phosphodiesterases (PDEs) degrade cAMP in cardiomyocytes but the role of PDEs in controlling cAMP signaling during pathological cardiac hypertrophy is poorly defined. Objective: Evaluate the &bgr;-adrenergic regulation of cardiac contractility and characterize the changes in cardiomyocyte cAMP signals and cAMP-PDE expression and activity following cardiac hypertrophy. Methods and Results: Cardiac hypertrophy was induced in rats by thoracic aortic banding over a time period of 5 weeks and was confirmed by anatomic measurements and echocardiography. Ex vivo myocardial function was evaluated in Langendorff-perfused hearts. Engineered cyclic nucleotide-gated (CNG) channels were expressed in single cardiomyocytes to monitor subsarcolemmal cAMP using whole-cell patch-clamp recordings of the associated CNG current (ICNG). PDE variant activity and protein level were determined in purified cardiomyocytes. Aortic stenosis rats exhibited a 67% increase in heart weight compared to sham-operated animals. The inotropic response to maximal &bgr;-adrenergic stimulation was reduced by ≈54% in isolated hypertrophied hearts, along with a ≈32% decrease in subsarcolemmal cAMP levels in hypertrophied myocytes. Total cAMP hydrolytic activity as well as PDE3 and PDE4 activities were reduced in hypertrophied myocytes, because of a reduction of PDE3A, PDE4A, and PDE4B, whereas PDE4D was unchanged. Regulation of &bgr;-adrenergic cAMP signals by PDEs was blunted in hypertrophied myocytes, as demonstrated by the diminished effects of IBMX (100 &mgr;mol/L) and of both the PDE3 inhibitor cilostamide (1 &mgr;mol/L) and the PDE4 inhibitor Ro 201724 (10 &mgr;mol/L). Conclusions: &bgr;-Adrenergic desensitization is accompanied by a reduction in cAMP-PDE and an altered modulation of &bgr;-adrenergic cAMP signals in cardiac hypertrophy.


Journal of the American College of Cardiology | 2013

Phosphodiesterase-2 Is Up-Regulated in Human Failing Hearts and Blunts β-Adrenergic Responses in Cardiomyocytes

Hind Mehel; Julius Emons; Christiane Vettel; Katrin Wittköpper; Danilo Seppelt; Matthias Dewenter; Susanne Lutz; Samuel Sossalla; Lars S. Maier; Patrick Lechêne; Jérôme Leroy; Florence Lefebvre; Audrey Varin; Thomas Eschenhagen; Stanley Nattel; Dobromir Dobrev; Wolfram-Hubertus Zimmermann; Viacheslav O. Nikolaev; Grégoire Vandecasteele; Rodolphe Fischmeister; Ali El-Armouche

OBJECTIVES This study investigated whether myocardial phosphodiesterase-2 (PDE2) is altered in heart failure (HF) and determined PDE2-mediated effects on beta-adrenergic receptor (β-AR) signaling in healthy and diseased cardiomyocytes. BACKGROUND Diminished cyclic adenosine monophosphate (cAMP) and augmented cyclic guanosine monophosphate (cGMP) signaling is characteristic for failing hearts. Among the PDE superfamily, PDE2 has the unique property of being able to be stimulated by cGMP, thus leading to a remarkable increase in cAMP hydrolysis mediating a negative cross talk between cGMP and cAMP signaling. However, the role of PDE2 in HF is poorly understood. METHODS Immunoblotting, radioenzymatic- and fluorescence resonance energy transfer-based assays, video edge detection, epifluorescence microscopy, and L-type Ca2(+) current measurements were performed in myocardial tissues and/or isolated cardiomyocytes from human and/or experimental HF, respectively. RESULTS Myocardial PDE2 expression and activity were ~2-fold higher in advanced human HF. Chronic β-AR stimulation via catecholamine infusions in rats enhanced PDE2 expression ~2-fold and cAMP hydrolytic activity ~4-fold, which correlated with blunted cardiac β-AR responsiveness. In diseased cardiomyocytes, higher PDE2 activity could be further enhanced by stimulation of cGMP synthesis via nitric oxide donors, whereas specific PDE2 inhibition partially restored β-AR responsiveness. Accordingly, PDE2 overexpression in healthy cardiomyocytes reduced the rise in cAMP levels and L-type Ca2(+) current amplitude, and abolished the inotropic effect following acute β-AR stimulation, without affecting basal contractility. Importantly, PDE2-overexpressing cardiomyocytes showed marked protection from norepinephrine-induced hypertrophic responses. CONCLUSIONS PDE2 is markedly up-regulated in failing hearts and desensitizes against acute β-AR stimulation. This may constitute an important defense mechanism during cardiac stress, for example, by antagonizing excessive β-AR drive. Thus, activating myocardial PDE2 may represent a novel intracellular antiadrenergic therapeutic strategy in HF.


PLOS ONE | 2013

CD200R/CD200 inhibits osteoclastogenesis: new mechanism of osteoclast control by mesenchymal stem cells in human.

Audrey Varin; Charalampos Pontikoglou; Elodie Labat; Frédéric Deschaseaux; Luc Sensebé

Bone homeostasis is maintained by the balance between bone-forming osteoblasts and bone-degrading osteoclasts. Osteoblasts have a mesenchymal origin whereas osteoclasts belong to the myeloid lineage. Osteoclast and osteoblast communication occurs through soluble factors secretion, cell-bone interaction and cell–cell contact, which modulate their activities. CD200 is an immunoglobulin superfamilly member expressed on various types of cells including mesenchymal stem cells (MSCs). CD200 receptor (CD200R) is expressed on myeloid cells such as monocytes/macrophages. We assume that CD200 could be a new molecule involved in the control of osteoclastogenesis and could play a role in MSC–osteoclast communication in humans. In this study, we demonstrated that soluble CD200 inhibited the differentiation of osteoclast precursors as well as their maturation in bone-resorbing cells in vitro. Soluble CD200 did not modify the monocyte phenotype but inhibited the receptor activator of nuclear factor kappa-B ligand (RANKL) signaling pathway as well as the gene expression of osteoclast markers such as osteoclast-associated receptor (OSCAR) and nuclear factor of activated T cells cytoplasmic 1 (NFATc1). Moreover, MSCs inhibited osteoclast formation, which depended on cell–cell contact and was associated with CD200 expression on the MSC surface. Our results clearly demonstrate that MSCs, through the expression of CD200, play a major role in the regulation of bone resorption and bone physiology and that the CD200-CD200R couple could be a new target to control bone diseases.


Cardiovascular Research | 2014

Control of cytoplasmic and nuclear protein kinase A by phosphodiesterases and phosphatases in cardiac myocytes

Zeineb Haj Slimane; Ibrahim Bedioune; Patrick Lechêne; Audrey Varin; Florence Lefebvre; Philippe Mateo; Valérie Domergue-Dupont; Matthias Dewenter; Wito Richter; Marco Conti; Ali El-Armouche; Jin Zhang; Rodolphe Fischmeister; Grégoire Vandecasteele

AIMS The cAMP-dependent protein kinase (PKA) mediates β-adrenoceptor (β-AR) regulation of cardiac contraction and gene expression. Whereas PKA activity is well characterized in various subcellular compartments of adult cardiomyocytes, its regulation in the nucleus remains largely unknown. The aim of the present study was to compare the modalities of PKA regulation in the cytoplasm and nucleus of cardiomyocytes. METHODS AND RESULTS Cytoplasmic and nuclear cAMP and PKA activity were measured with targeted fluorescence resonance energy transfer probes in adult rat ventricular myocytes. β-AR stimulation with isoprenaline (Iso) led to fast cAMP elevation in both compartments, whereas PKA activity was fast in the cytoplasm but markedly slower in the nucleus. Iso was also more potent and efficient in activating cytoplasmic than nuclear PKA. Similar slow kinetics of nuclear PKA activation was observed upon adenylyl cyclase activation with L-858051 or phosphodiesterase (PDE) inhibition with 3-isobutyl-1-methylxantine. Consistently, pulse stimulation with Iso (15 s) maximally induced PKA and myosin-binding protein C phosphorylation in the cytoplasm, but marginally activated PKA and cAMP response element-binding protein phosphorylation in the nucleus. Inhibition of PDE4 or ablation of the Pde4d gene in mice prolonged cytoplasmic PKA activation and enhanced nuclear PKA responses. In the cytoplasm, phosphatase 1 (PP1) and 2A (PP2A) contributed to the termination of PKA responses, whereas only PP1 played a role in the nucleus. CONCLUSION Our study reveals a differential integration of cytoplasmic and nuclear PKA responses to β-AR stimulation in cardiac myocytes. This may have important implications in the physiological and pathological hypertrophic response to β-AR stimulation.


Plastic and Reconstructive Surgery | 2016

Mechanically Isolated Stromal Vascular Fraction Provides a Valid and Useful Collagenase-Free Alternative Technique: A Comparative Study.

Nicolas Bertheuil; Marina Escubes; J.-L. Grolleau; I. Garrido; Jerome Laloze; Nicolas Espagnolle; Louis Casteilla; Luc Sensebé; Audrey Varin

Background: The use of stromal vascular fraction and adipose-derived stromal cells in tissue regeneration is now being increasingly investigated, and studies have demonstrated that adipose-derived stromal cells present differentiation and immunomodulatory capacities. The development of a rapid, inexpensive, and enzyme-free technique to isolate adipose-derived stromal cell–enriched stromal vascular fraction is a major goal for stem cell therapy. Therefore, the authors compared innovative mechanical procedures to the gold standard technique, collagenase digestion. Methods: Stromal vascular fraction was prepared from 21 liposuctions using either enzymatic digestion or two different mechanical methods: high vortexing/centrifugation and dissociation by intersyringe processing. The effects of tissue processing on cell count, viability, proliferation, clonogenic enrichment, and the phenotypes of the different native cell were determined. Adipose-derived stromal cell phenotypes from the different protocols, and their differentiation and immunosuppressive potential, were compared. Results: Enzymatic digestion isolated more viable cells than dissociation by intersyringe processing and vortexing/centrifugation. The expansion rate and clonogenic enrichment were higher for stromal vascular fraction isolated with collagenase. The proportion of adipose-derived stromal cells was higher in stromal vascular fraction extracted with dissociation than with enzymatic digestion and vortexing/centrifugation (p < 0.01). Interestingly, all cultured adipose-derived stromal cells displayed similar differentiation and immunosuppressive capacities. Conclusions: Enzymatic digestion extracts more adipose-derived stromal cells, but intersyringe dissociation enables the rapid extraction of adipose-derived stromal cell–enriched stromal vascular fraction. Moreover, mechanical methods enable adipose-derived stromal cell isolation with stemness and immunosuppressive properties, similar to enzymatic digestion. Such mechanical procedures could allow easier and more rapid isolation of adipose-derived stromal cell–enriched stromal vascular fraction for practitioners. CLINICAL QUESTION/LEVEL OF EVIDENCE: Therapeutic, V.


Circulation | 2015

Carabin Protects Against Cardiac Hypertrophy by Blocking Calcineurin, Ras, and Ca2+/Calmodulin-Dependent Protein Kinase II Signaling

Malik Bisserier; Magali Berthouze-Duquesnes; Magali Breckler; Florence Tortosa; Loubina Fazal; Annélie de Régibus; Anne-Coline Laurent; Audrey Varin; Alexandre Lucas; Maxime Branchereau; Pauline Marck; Jean-Nicolas Schickel; Claudine Deloménie; Olivier Cazorla; Pauline Soulas-Sprauel; Bertrand Crozatier; Eric Morel; Christophe Heymes; Frank Lezoualc’h

Background— Cardiac hypertrophy is an early hallmark during the clinical course of heart failure and is regulated by various signaling pathways. However, the molecular mechanisms that negatively regulate these signal transduction pathways remain poorly understood. Methods and Results— Here, we characterized Carabin, a protein expressed in cardiomyocytes that was downregulated in cardiac hypertrophy and human heart failure. Four weeks after transverse aortic constriction, Carabin-deficient (Carabin−/−) mice developed exaggerated cardiac hypertrophy and displayed a strong decrease in fractional shortening (14.6±1.6% versus 27.6±1.4% in wild type plus transverse aortic constriction mice; P<0.0001). Conversely, compensation of Carabin loss through a cardiotropic adeno-associated viral vector encoding Carabin prevented transverse aortic constriction–induced cardiac hypertrophy with preserved fractional shortening (39.9±1.2% versus 25.9±2.6% in control plus transverse aortic constriction mice; P<0.0001). Carabin also conferred protection against adrenergic receptor–induced hypertrophy in isolated cardiomyocytes. Mechanistically, Carabin carries out a tripartite suppressive function. Indeed, Carabin, through its calcineurin-interacting site and Ras/Rab GTPase–activating protein domain, functions as an endogenous inhibitor of calcineurin and Ras/extracellular signal-regulated kinase prohypertrophic signaling. Moreover, Carabin reduced Ca2+/calmodulin-dependent protein kinase II activation and prevented nuclear export of histone deacetylase 4 after adrenergic stimulation or myocardial pressure overload. Finally, we showed that Carabin Ras–GTPase–activating protein domain and calcineurin-interacting domain were both involved in the antihypertrophic action of Carabin. Conclusions— Our study identifies Carabin as a negative regulator of key prohypertrophic signaling molecules, calcineurin, Ras, and Ca2+/calmodulin-dependent protein kinase II and implicates Carabin in the development of cardiac hypertrophy and failure.


Aesthetic Surgery Journal | 2016

Liposuction Preserves the Morphological Integrity of the Microvascular Network: Flow Cytometry and Confocal Microscopy Evidence in a Controlled Study

Nicolas Bertheuil; Sandra Berger-Müller; Cédric Ménard; Frédéric Mourcin; Eric Watier; J.-L. Grolleau; I. Garrido; Karin Tarte; Luc Sensebé; Audrey Varin

BACKGROUND Liposuction is a very popular technique in plastic surgery that allows for the taking adipose tissue (AT) on large surfaces with little risk of morbidity. Although liposuction was previously shown to preserve large perforator vessels, little is known about the effects of liposuction on the microvasculature network. OBJECTIVES The aim of this study was to analyze the effect of liposuction on the preservation of microvessels at tissue and cellular levels by flow cytometry and confocal microscopy following abdominoplasty procedure. METHODS Percentage of endothelial cells in AT from liposuction and en bloc AT was determined by multicolor flow cytometry. Moreover, vessel density and adipocyte content were analyzed in situ in 3 different types of AT (en bloc, from liposuction, and residual AT after liposuction) by confocal microscopy. RESULTS Flow cytometric analysis showed that en bloc AT contained 30.6% ± 12.9% and AT from liposuction 21.6% ± 9.9% of endothelial cells (CD31(pos)/CD45(neg)/CD235a(neg)/CD11b(neg)) (P = .009). Moreover, analysis of paired AT from the same patients (n = 5) confirmed a lower percentage of endothelial cells in AT from liposuction compared to en bloc AT (17.7% ± 4.5% vs 21.9% ± 3.3%, P = .031). Likewise, confocal microscopy showed that en bloc AT contained 8.2% ± 6.3%, AT from liposuction only 1.6% ± 1.0% (P < .0001), and AT after liposuction 8.9% ± 4.1% (P = .111) of CD31(pos) vessels. Conversely, adipocyte content was 39.5% ± 14.5% in the en bloc AT, 45% ± 18.4% in AT from liposuction (P = .390), and 18.8 ± 14.8% in AT after liposuction (P = .011). CONCLUSIONS For the first time, we demonstrate that liposuction preserves the microvascular network. Indeed, a low percentage of endothelial cells was found in AT from liposuction and we confirm the persistence of microvessels in the tissue after liposuction.


Human Molecular Genetics | 2014

Inactivation of the Carney Complex gene 1 (PRKAR1A) alters spatiotemporal regulation of cAMP and cAMP-dependent protein kinase : a study using genetically-encoded FRET-based reporters

Laure Cazabat; Bruno Ragazzon; Audrey Varin; Marie Potier-Cartereau; Christophe Vandier; Delphine Vezzosi; Marthe Risk-Rabin; Aziz Guellich; Julia Schittl; Patrick Lechêne; Wito Richter; Viacheslav O. Nikolaev; Jin Zhang; Jérôme Bertherat; Grégoire Vandecasteele

Carney complex (CNC) is a hereditary disease associating cardiac myxoma, spotty skin pigmentation and endocrine overactivity. CNC is caused by inactivating mutations in the PRKAR1A gene encoding PKA type I alpha regulatory subunit (RIα). Although PKA activity is enhanced in CNC, the mechanisms linking PKA dysregulation to endocrine tumorigenesis are poorly understood. In this study, we used Förster resonance energy transfer (FRET)-based sensors for cAMP and PKA activity to define the role of RIα in the spatiotemporal organization of the cAMP/PKA pathway. RIα knockdown in HEK293 cells increased basal as well as forskolin or prostaglandin E1 (PGE1)-stimulated total cellular PKA activity as reported by western blots of endogenous PKA targets and the FRET-based global PKA activity reporter, AKAR3. Using variants of AKAR3 targeted to subcellular compartments, we identified similar increases in the response to PGE1 in the cytoplasm and at the outer mitochondrial membrane. In contrast, at the plasma membrane, the response to PGE1 was decreased along with an increase in basal FRET ratio. These results were confirmed by western blot analysis of basal and PGE1-induced phosphorylation of membrane-associated vasodilator-stimulated phosphoprotein. Similar differences were observed between the cytoplasm and the plasma membrane in human adrenal cells carrying a RIα inactivating mutation. RIα inactivation also increased cAMP in the cytoplasm, at the outer mitochondrial membrane and at the plasma membrane, as reported by targeted versions of the cAMP indicator Epac1-camps. These results show that RIα inactivation leads to multiple, compartment-specific alterations of the cAMP/PKA pathway revealing new aspects of signaling dysregulation in tumorigenesis.


Cardiovascular Research | 2018

PDE4 and mAKAPβ are nodal organizers of β2-ARs nuclear PKA signalling in cardiac myocytes

Ibrahim Bedioune; Florence Lefebvre; Patrick Lechêne; Audrey Varin; Valérie Domergue; Michael S. Kapiloff; Rodolphe Fischmeister; Grégoire Vandecasteele

Aims β1- and β2-adrenergic receptors (β-ARs) produce different acute contractile effects on the heart partly because they impact on different cytosolic pools of cAMP-dependent protein kinase (PKA). They also exert different effects on gene expression but the underlying mechanisms remain unknown. The aim of this study was to understand the mechanisms by which β1- and β2-ARs regulate nuclear PKA activity in cardiomyocytes. Methods and results We used cytoplasmic and nuclear targeted biosensors to examine cAMP signals and PKA activity in adult rat ventricular myocytes upon selective β1- or β2-ARs stimulation. Both β1- and β2-AR stimulation increased cAMP and activated PKA in the cytoplasm. Although the two receptors also increased cAMP in the nucleus, only β1-ARs increased nuclear PKA activity and up-regulated the PKA target gene and pro-apoptotic factor, inducible cAMP early repressor (ICER). Inhibition of phosphodiesterase (PDE)4, but not Gi, PDE3, GRK2 nor caveolae disruption disclosed nuclear PKA activation and ICER induction by β2-ARs. Both nuclear and cytoplasmic PKI prevented nuclear PKA activation and ICER induction by β1-ARs, indicating that PKA activation outside the nucleus is required for subsequent nuclear PKA activation and ICER mRNA expression. Cytoplasmic PKI also blocked ICER induction by β2-AR stimulation (with concomitant PDE4 inhibition). However, in this case nuclear PKI decreased ICER up-regulation by only 30%, indicating that other mechanisms are involved. Down-regulation of mAKAPβ partially inhibited nuclear PKA activation upon β1-AR stimulation, and drastically decreased nuclear PKA activation upon β2-AR stimulation in the presence of PDE4 inhibition. Conclusions β1- and β2-ARs differentially regulate nuclear PKA activity and ICER expression in cardiomyocytes. PDE4 insulates a mAKAPβ-targeted PKA pool at the nuclear envelope that prevents nuclear PKA activation upon β2-AR stimulation.


Annales De Chirurgie Plastique Esthetique | 2018

Adipose mesenchymal stromal cells: Definition, immunomodulatory properties, mechanical isolation and interest for plastic surgery

Nicolas Bertheuil; B. Chaput; C. Ménard; Audrey Varin; J. Laloze; Eric Watier; Karin Tarte

Ever since their discovery in 2001, adipose mesenchymal stromal cells (ASC) have profoundly modified clinical indications and our practice of plastic surgery, thereby placing our discipline at the forefront of regenerative medicine. These cells act through paracrine signaling by synthesizing immunosuppressive and pro-angiogenic factors. They are of key importance with regard to the regenerative properties of autologously grafted adipose tissue (AT). Taken together, they make up the stromal vascular fraction (SVF) comprising all AT cells except for adipocytes. As our knowledge evolves, we are moving from fat grafting towards SVF grafting, of which the essential sought-after effect is tissue regeneration. The objective of the present review is to synthesize present-day information on ASCs and their immunomodulatory properties and, from a practical standpoint, to indicate present-day and future steps towards establishment of clinical routine, particularly through application of techniques favoring mechanical digestion of adipose tissue.

Collaboration


Dive into the Audrey Varin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

I. Garrido

Paul Sabatier University

View shared research outputs
Top Co-Authors

Avatar

Jin Zhang

University of California

View shared research outputs
Top Co-Authors

Avatar

Wito Richter

University of California

View shared research outputs
Top Co-Authors

Avatar

Ali El-Armouche

Dresden University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge