Augustin C. Mot
Leibniz Association
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Augustin C. Mot.
Molecules | 2014
Laurian Vlase; Daniela Benedec; Daniela Hanganu; Grigore Damian; Ioan Csillag; Bogdan Sevastre; Augustin C. Mot; Radu Silaghi-Dumitrescu; Ioan Tilea
This study was designed to examine the in vitro antioxidant and antimicrobial activities and to characterize the polyphenolic composition of the ethanolic extracts of Hyssopus officinalis, Ocimum basilicum and Teucrium chamaedrys. Qualitative and quantitative analysis of the major phenolic compounds were conducted using high-performance liquid chromatography coupled to mass spectrometry (HPLC-MS). The total polyphenols, caffeic acid derivatives and flavonoids content was spectrophotometrically determined. The phenolic profile showed the presence of phenolic acid derivatives (caftaric, gentisic, caffeic, p-coumaric, chlorogenic and ferulic acids), flavonoid glycosides (rutin, isoquercitrin and quercitrin) and free flavonoid aglycons (luteolin, quercetin), in different concentrations. DPPH radical scavenging assay, Trolox equivalent antioxidant capacity (TEAC) method, hemoglobin ascorbate peroxidase activity inhibition (HAPX) assay, and electron paramagnetic resonance (EPR) radicals detection were employed, revealing several aspects of the antioxidant activities of these species. The antimicrobial tests were performed using the disk diffusion assay. These extracts contained a large amount of the polyphenolic compounds (77.72, 175.57, and 243.65 mg/g, respectively), and they showed a good antioxidant activity, as witnessed by a number of methods. T. chamaedrys had a high antimicrobial activity. Besides their antioxidant activity, the antimicrobial effect of these extracts confirms the biological activities of these herbal medicinal products.
PLOS ONE | 2013
Jean De Dieu Tamokou; Jean Rodolphe Chouna; Eva Fischer-Fodor; Gabriela Chereches; Otilia Barbos; Grigore Damian; Daniela Benedec; Mihaela Duma; Alango Pépin Nkeng Efouet; Hippolyte K. Wabo; Jules Roger Kuiate; Augustin C. Mot; Radu Silaghi-Dumitrescu
Traditional remedies have a long-standing history in Cameroon and continue to provide useful and applicable tools for treating ailments. Here, the anticancer, antimicrobial and antioxidant activities of ten antioxidant-rich Cameroonian medicinal plants and of some of their isolated compounds are evaluated.The plant extracts were prepared by maceration in organic solvents. Fractionation of plant extract was performed by column chromatography and the structures of isolated compounds (emodin, 3-geranyloxyemodin, 2-geranylemodin) were confirmed spectroscopically. The antioxidant activity (AOA) was determined using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) bleaching method, the trolox equivalent antioxidant capacity (TEAC), and the hemoglobin ascorbate peroxidase activity inhibition (HAPX) assays. The anticancer activity was evaluated against A431 squamous epidermal carcinoma, WM35 melanoma, A2780 ovary carcinoma and cisplatin-resistant A2780cis cells, using a direct colorimetric assay. The total phenolic content in the extracts was determined spectrophotometrically by the Folin–Ciocalteu method. Rumex abyssinicus showed the best AOA among the three assays employed. The AOA of emodin was significantly higher than that of 3-geranyloxyemodin and 2-geranylemodin for both TEAC and HAPX methods. The lowest IC50 values (i.e., highest cytotoxicity) were found for the extracts of Vismia laurentii, Psorospermum febrifugum, Pentadesma butyracea and Ficus asperifolia. The Ficus asperifolia and Psorospermum febrifugum extracts are selective against A2780cis ovary cells, a cell line which is resistant to the standard anticancer drug cisplatin. Emodin is more toxic compared to the whole extract, 3-geranyloxyemodin and 2-geranylemodin. Its selectivity against the platinum-resistant A2780cis cell line is highest. All of the extracts display antimicrobial activity, in some cases comparable to that of gentamycin.
FEBS Letters | 2009
Falk Hillmann; Oliver Riebe; Ralf Jörg Fischer; Augustin C. Mot; Jonathan D. Caranto; Donald M. Kurtz; Hubert Bahl
Two flavo‐diiron proteins (FDPs), FprA1 and FprA2, are up‐regulated when the strictly anaerobic solvent producer, Clostridium acetobutylicum, is exposed to dioxygen. These two FDPs were purified following heterologous overexpression in Escherichia coli as N‐terminal Strep‐tag fusion proteins. The recombinant FprA1 and FprA2 were found to be homodimeric and homotetrameric, respectively, and both FDPs functioned as terminal components of NADH oxidases (NADH:O2 oxidoreductases) when using C. acetobutylicum NADH:rubredoxin oxidoreductase (NROR) and rubredoxin (Rd) as electron transport intermediaries. Both FDPs catalyzed the four‐electron reduction of molecular oxygen to water with similar specific activities. The results are consistent with these FDPs functioning as efficient scavengers of intracellular dioxygen under aerobic or microoxic growth conditions.
Molecules | 2013
Daniela Benedec; Laurian Vlase; Ilioara Oniga; Augustin C. Mot; Grigore Damian; Daniela Hanganu; Mihaela Duma; Radu Silaghi-Dumitrescu
The aim of this work was to study the chemical composition, antioxidant and antibacterial properties of Achillea distans Waldst. et Kit. subsp. distans and Achillea distans Waldst. et Kit. subsp. alpina Rochel, from the Rodna Mountains (Romania). The identification and quantification of major phenolic compounds was performed by a HPLC-MS method. The total polyphenolic and flavonoid content was determined spectrophotometrically. The antioxidant activity was evaluated using the DPPH bleaching method, trolox equivalent antioxidant capacity assay (TEAC), hemoglobin ascorbate peroxidase activity inhibition (HAPX) assay, and an Electron Paramagnetic Resonance (EPR) spectroscopy method. A data indicated that A. distans subsp. alpina extract has more antioxidant activity than A. distans subsp. distans extract. Luteolin, apigenin, quercetin, caffeic and chlorogenic acids were present in the two extracts of A. distans, but in different amounts. Three flavonoids were detected only in A. distans subsp. alpina. The polyphenol-richer A. distans subsp. alpina extract showed a higher antioxidant activity than A. distans subsp. distans extract. A. distans subsp. distans extract showed inhibitory activity for Gram-positive bacteria, as evaluated with four species. The quantitative and qualitative differences between the two subspecies of Achillea distans could be used as a potential taxonomic marker in order to distinguish the species.
Biomacromolecules | 2014
Denisa Hathazi; Augustin C. Mot; Anetta Vaida; Florina Scurtu; Iulia Lupan; Eva Fischer-Fodor; Grigore Damian; Donald M. Kurtz; Radu Silaghi-Dumitrescu
The nonheme peroxidase, rubrerythrin, shows the ability to reduce hydrogen peroxide to water without involving strongly oxidizing and free-radical-creating powerful oxidants such as compounds I and II [formally Fe(IV)] formed in peroxidases and catalases. Rubrerythrin could, therefore, be a useful ingredient in protein-based artificial oxygen carriers. Here, we report that the oxygen-carrying proteins, hemoglobin (Hb) and hemerythrin (Hr), can each be copolymerized with rubrerythrin using glutaraldehyde yielding high molecular weight species. These copolymers show additional peroxidase activity compared to Hb-only and Hr-only polymers, respectively and also generate lower levels of free radicals in reactions that involve hydrogen peroxide. Tests on human umbilical vein endothelial cells (HUVEC) reveal slightly better performance of the Rbr copolymers compared to controls, as measured at 24 h, but not at later times.
Methods of Molecular Biology | 2015
Augustin C. Mot; Cristina Bischin; Grigore Damian; Radu Silaghi-Dumitrescu
Two methods for the measurement of antioxidant capacity are described: one based on a chronometric variation of a hemoglobin ascorbate peroxidase assay and the other based on electron paramagnetic resonance (EPR) spectra collected upon alkaline treatment of ethanolic samples. The involved chemical mechanisms are discussed, alongside the most important benefits and shortcomings; the assays offer new qualitative and quantitative information on samples of biological as well as synthetic origin.
Journal of Biosciences | 2011
Eva Fischer-Fodor; Augustin C. Mot; Florina Deac; Mariann Arkosi; Radu Silaghi-Dumitrescu
Hemerythrin is a dioxygen-carrying protein whose oxidative/nitrosative stress-related reactivity is lower than that of hemoglobin, which may warrant investigation of hemerythrin as raw material for artificial oxygen carriers (‘blood substitutes’). We report here the first biological tests for hemerythrin and its chemical derivatives, comparing their performance with that of a representative competitor, glutaraldehyde-polymerized bovine hemoglobin. Hemerythrin (native or derivatized) exhibits a proliferative effect on human umbilical vein endothelial cell (HUVEC) cultures, as opposed to a slight inhibitory effect of hemoglobin. A similar positive effect is displayed on human lymphocytes by glutaraldehyde-polymerized hemerythrin, but not by native or polyethylene glycol-derivatized hemerythrin.
Protein Journal | 2010
Augustin C. Mot; Alina Roman; Iulia Lupan; Donald M. Kurtz; Radu Silaghi-Dumitrescu
Hemerythrin is proposed as an alternative to hemoglobin-based blood substitutes. In contrast to hemoglobin, hemerythrin exhibits negligible reactivity towards oxidative and nitrosative stress agents (peroxide, nitric oxide, nitrite). Protocols for attachment of polyethylene glycol and glutaraldehyde cross-linking of Hr are described. These derivatizations appear to have favorable effects on O2 affinity and autoxidation rates for use in blood substitutes. Based on lessons learned from hemoglobin-based blood substitutes, these derivatizations should also help limit extravasation and antigenicity of a hemerythrin-based blood substitute.
New Phytologist | 2018
Augustin C. Mot; Erik Prell; Maria Klecker; Christin Naumann; Frederik Faden; Bernhard Westermann; Nico Dissmeyer
Summary The N‐end rule pathway has emerged as a major system for regulating protein functions by controlling their turnover in medical, animal and plant sciences as well as agriculture. Although novel functions and enzymes of the pathway have been discovered, the ubiquitination mechanism and substrate specificity of N‐end rule pathway E3 ubiquitin ligases have remained elusive. Taking the first discovered bona fide plant N‐end rule E3 ligase PROTEOLYSIS1 (PRT1) as a model, we used a novel tool to molecularly characterize polyubiquitination live, in real time. We gained mechanistic insights into PRT1 substrate preference and activation by monitoring live ubiquitination using a fluorescent chemical probe coupled to artificial substrate reporters. Ubiquitination was measured by rapid in‐gel fluorescence scanning as well as in real time by fluorescence polarization. The enzymatic activity, substrate specificity, mechanisms and reaction optimization of PRT1‐mediated ubiquitination were investigated ad hoc instantaneously and with significantly reduced reagent consumption. We demonstrated that PRT1 is indeed an E3 ligase, which has been hypothesized for over two decades. These results demonstrate that PRT1 has the potential to be involved in polyubiquitination of various substrates and therefore pave the way to understanding recently discovered phenotypes of prt1 mutants.
Protein Journal | 2011
Oana Zolog; Augustin C. Mot; Florina Deac; Alina Roman; Eva Fischer-Fodor; Radu Silaghi-Dumitrescu
A new protocol is described for derivatization of hemoglobin with polyethyleneglycol (PEG) via reaction of the unmodified native hemoglobin with an activated amine-reacting polyethylene glycol derivative which, unlike protocols previously described, leads to formation of a peptide bond between hemoglobin and PEG. Dioxygen binding and peroxide reactivities of the derivatized hemoglobin are examined, and found to be within reasonable limits, with the particular observation that, unlike with a few other derivatization protocols, the dioxygen affinity is slightly lower than that of native Hb. In cell culture tests (human umbilical vein epithelial cells, HUVEC), the derivatization protocol induces no toxic effect. These results show promise towards applicability for production of hemoglobin-based blood substitutes.