Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Augustine M. K. Choi is active.

Publication


Featured researches published by Augustine M. K. Choi.


Nature Immunology | 2011

Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome

Kiichi Nakahira; Jeffrey A. Haspel; Vijay A. K. Rathinam; Seon-Jin Lee; Tamas Dolinay; Hilaire C. Lam; Joshua A. Englert; Marlene Rabinovitch; Manuela Cernadas; Hong Pyo Kim; Katherine A. Fitzgerald; Stefan W. Ryter; Augustine M. K. Choi

Autophagy, a cellular process for organelle and protein turnover, regulates innate immune responses. Here we demonstrate that depletion of the autophagic proteins LC3B and beclin 1 enhanced the activation of caspase-1 and secretion of interleukin 1β (IL-1β) and IL-18. Depletion of autophagic proteins promoted the accumulation of dysfunctional mitochondria and cytosolic translocation of mitochondrial DNA (mtDNA) in response to lipopolysaccharide (LPS) and ATP in macrophages. Release of mtDNA into the cytosol depended on the NALP3 inflammasome and mitochondrial reactive oxygen species (ROS). Cytosolic mtDNA contributed to the secretion of IL-1β and IL-18 in response to LPS and ATP. LC3B-deficient mice produced more caspase-1-dependent cytokines in two sepsis models and were susceptible to LPS-induced mortality. Our study suggests that autophagic proteins regulate NALP3-dependent inflammation by preserving mitochondrial integrity.


The New England Journal of Medicine | 2013

Autophagy in Human Health and Disease

Augustine M. K. Choi; Stefan W. Ryter; Beth Levine

This review discusses the cellular process of autophagy (“self-eating”), which plays key roles in normal development of the immune system and adaptation to stress, as well as in a wide range of disease states.


Journal of Biological Chemistry | 1997

Hypoxia-inducible Factor-1 Mediates Transcriptional Activation of the Heme Oxygenase-1 Gene in Response to Hypoxia

Patty J. Lee; Bing-Hua Jiang; Beek Yoke Chin; Narayan V. Iyer; Jawed Alam; Gregg L. Semenza; Augustine M. K. Choi

Exposure of rats to hypoxia (7% O2) markedly increased the level of heme oxygenase-1 (HO-1) mRNA in several tissues. Accumulation of HO-1 transcripts was also observed after exposure of rat aortic vascular smooth muscle (VSM) cells to 1% O2, and this induction was dependent on gene transcription. Activation of the mouse HO-1 gene by all agents thus far tested is mediated by two 5′-enhancer sequences, SX2 and AB1, but neither fragment was responsive to hypoxia in VSM cells. Hypoxia-dependent induction of the chloramphenicol acetyltransferase (CAT) reporter gene was mediated by a 163-bp fragment located approximately 9.5 kilobases upstream of the transcription start site. This fragment contains two potential binding sites for hypoxia-inducible factor 1 (HIF-1). A role for HIF-1 in HO-1 gene regulation was established by the following observations: 1) HIF-1 specifically bound to an oligonucleotide spanning these sequences, 2) mutation of these sequences abolished HIF-1 binding and hypoxia-dependent gene activation in VSM cells, 3) hypoxia increased HIF-1α and HIF-1β protein levels in VSM cells, and 4) hypoxia-dependent HO-1 mRNA accumulation was not observed in mutant hepatoma cells lacking HIF-1 DNA-binding activity. Taken together, these data demonstrate that hypoxia induces HO-1 expression in animal tissues and cell cultures and implicate HIF-1 in this response.


Journal of Clinical Investigation | 1999

Exogenous administration of heme oxygenase-1 by gene transfer provides protection against hyperoxia-induced lung injury

Leo E. Otterbein; Jay K. Kolls; Lin L. Mantell; Julia L. Cook; Jawed Alam; Augustine M. K. Choi

Heme oxygenase-1 (HO-1) confers protection against a variety of oxidant-induced cell and tissue injury. In this study, we examined whether exogenous administration of HO-1 by gene transfer could also confer protection. We first demonstrated the feasibility of overexpressing HO-1 in the lung by gene transfer. A fragment of the rat HO-1 cDNA clone containing the entire coding region was cloned into plasmid pAC-CMVpLpA, and recombinant adenoviruses containing the rat HO-1 cDNA fragment Ad5-HO-1 were generated by homologous recombination. Intratracheal administration of Ad5-HO-1 resulted in a time-dependent increase in expression of HO-1 mRNA and protein in the rat lungs. Increased HO-1 protein expression was detected diffusely in the bronchiolar epithelium of rats receiving Ad5-HO-1, as assessed by immunohistochemical studies. We then examined whether ectopic expression of HO-1 could confer protection against hyperoxia-induced lung injury. Rats receiving Ad5-HO-1, but not AdV-betaGal, a recombinant adenovirus expressing Escherichia coli beta-galactosidase, before exposure to hyperoxia (>99% O2) exhibited marked reduction in lung injury, as assessed by volume of pleural effusion and histological analyses (significant reduction of edema, hemorrhage, and inflammation). In addition, rats receiving Ad5-HO-1 also exhibited increased survivability against hyperoxic stress when compared with rats receiving AdV-betaGal. Expression of the antioxidant enzymes manganese superoxide dismutase (Mn-SOD) and copper-zinc superoxide dismutase (CuZn-SOD) and of L-ferritin and H-ferritin was not affected by Ad5-HO-1 administration. Furthermore, rats treated with Ad5-HO-1 exhibited attenuation of hyperoxia-induced neutrophil inflammation and apoptosis. Taken together, these data suggest the feasibility of high-level HO-1 expression in the rat lung by gene delivery. To our knowledge, we have demonstrated for the first time that HO-1 can provide protection against hyperoxia-induced lung injury in vivo by modulation of neutrophil inflammation and lung apoptosis.


Journal of Immunology | 2001

Carbon Monoxide Generated by Heme Oxygenase-1 Suppresses the Rejection of Mouse-to-Rat Cardiac Transplants

Sato K; József Balla; Leo E. Otterbein; R. N. Smith; S. Brouard; Yuan Lin; Eva Csizmadia; Jean Sévigny; Simon C. Robson; Vercellotti G; Augustine M. K. Choi; Fritz H. Bach; Miguel P. Soares

Mouse-to-rat cardiac transplants survive long term after transient complement depletion by cobra venom factor and T cell immunosuppression by cyclosporin A. Expression of heme oxygenase-1 (HO-1) by the graft vasculature is critical to achieve graft survival. In the present study, we asked whether this protective effect was attributable to the generation of one of the catabolic products of HO-1, carbon monoxide (CO). Our present data suggests that this is the case. Under the same immunosuppressive regimen that allows mouse-to-rat cardiac transplants to survive long term (i.e., cobra venom factor plus cyclosporin A), inhibition of HO-1 activity by tin protoporphyrin, caused graft rejection in 3–7 days. Rejection was associated with widespread platelet sequestration, thrombosis of coronary arterioles, myocardial infarction, and apoptosis of endothelial cells as well as cardiac myocytes. Under inhibition of HO-1 activity by tin protoporphyrin, exogenous CO suppressed graft rejection and restored long-term graft survival. This effect of CO was associated with inhibition of platelet aggregation, thrombosis, myocardial infarction, and apoptosis. We also found that expression of HO-1 by endothelial cells in vitro inhibits platelet aggregation and protects endothelial cells from apoptosis. Both these actions of HO-1 are mediated through the generation of CO. These data suggests that HO-1 suppresses the rejection of mouse-to-rat cardiac transplants through a mechanism that involves the generation of CO. Presumably CO suppresses graft rejection by inhibiting platelet aggregation that facilitates vascular thrombosis and myocardial infarction. Additional mechanisms by which CO overcomes graft rejection may involve its ability to suppress endothelial cell apoptosis.


Journal of Biological Chemistry | 2009

Fatty acids modulate toll-like receptor 4 activation through regulation of receptor dimerization and recruitment into lipid rafts in a reactive oxygen species-dependent manner

Scott Wong; Myung-Ja Kwon; Augustine M. K. Choi; Hong-Pyo Kim; Kiichi Nakahira; Daniel H. Hwang

The saturated fatty acids acylated on Lipid A of lipopolysaccharide (LPS) or bacterial lipoproteins play critical roles in ligand recognition and receptor activation for Toll-like Receptor 4 (TLR4) and TLR2. The results from our previous studies demonstrated that saturated and polyunsaturated fatty acids reciprocally modulate the activation of TLR4. However, the underlying mechanism has not been understood. Here, we report for the first time that the saturated fatty acid lauric acid induced dimerization and recruitment of TLR4 into lipid rafts, however, dimerization was not observed in non-lipid raft fractions. Similarly, LPS and lauric acid enhanced the association of TLR4 with MD-2 and downstream adaptor molecules, TRIF and MyD88, into lipid rafts leading to the activation of downstream signaling pathways and target gene expression. However, docosahexaenoic acid (DHA), an n-3 polyunsaturated fatty acid, inhibited LPS- or lauric acid-induced dimerization and recruitment of TLR4 into lipid raft fractions. Together, these results demonstrate that lauric acid and DHA reciprocally modulate TLR4 activation by regulation of the dimerization and recruitment of TLR4 into lipid rafts. In addition, we showed that TLR4 recruitment to lipid rafts and dimerization were coupled events mediated at least in part by NADPH oxidase-dependent reactive oxygen species generation. These results provide a new insight in understanding the mechanism by which fatty acids differentially modulate TLR4-mediated signaling pathway and consequent inflammatory responses which are implicated in the development and progression of many chronic diseases.


Journal of Biological Chemistry | 2003

Suppression of inflammatory cytokine production by carbon monoxide involves the JNK pathway and AP-1.

Danielle Morse; Soeren E. Pischke; Zhihong Zhou; Roger J. Davis; Richard A. Flavell; Torsten Loop; Sherrie L. Otterbein; Leo E. Otterbein; Augustine M. K. Choi

The stress-inducible protein heme oxygenase-1 provides protection against oxidative stress and modulates pro-inflammatory cytokines. As the sepsis syndrome results from the release of pro-inflammatory mediators, we postulated that heme oxygenase-1 and its enzymatic product CO would protect against lethality in a murine model of sepsis. Mice treated with a lethal dose of lipopolysaccharide (LPS) and subsequently exposed to inhaled CO had significantly better survival and lower serum interleukin (IL)-6 and IL-1β levels than their untreated counterparts. In vitro, mouse macrophages exposed to LPS and CO had significantly attenuated IL-6 production; this effect was concentration-dependent and occurred at a transcriptional level. The same effect was seen with increased endogenous CO production through overexpression of heme oxygenase-1. Mutation within the AP-1-binding site in the IL-6 promoter diminished the effect of CO on promoter activity, and treatment of macrophages with CO decreased AP-1 binding in an electrophoretic mobility shift assay. Electrophoretic mobility supershift assay indicated that the JunB, JunD, and c-Fos components of AP-1 were particularly affected. Upstream of AP-1, CO decreased JNK phosphorylation in murine macrophages and lung endothelial cells. Mice deficient in the JNK pathway had decreased serum levels of IL-6 and IL-1β in response to LPS compared with control mice, and no effect of CO on these cytokine levels was seen in Jnk1 or Jnk2 genedeleted mice. In summary, these results suggest that CO provides protection in a murine model of sepsis through modulation of inflammatory cytokine production. For the first time, the effect of CO is shown to be mediated via the JNK signaling pathway and the transcription factor AP-1.


Nature | 2013

Paneth cells as a site of origin for intestinal inflammation

Timon E. Adolph; Michal Tomczak; Lukas Niederreiter; Hyun-Jeong Ko; Janne Böck; Eduardo Martínez-Naves; Jonathan N. Glickman; Markus Tschurtschenthaler; John H. Hartwig; Shuhei Hosomi; Magdalena B. Flak; Jennifer L Cusick; Kenji Kohno; Takao Iwawaki; Susanne Billmann-Born; Tim Raine; Richa Bharti; Ralph Lucius; Mi-Na Kweon; Stefan J. Marciniak; Augustine M. K. Choi; Susan J. Hagen; Stefan Schreiber; Philip Rosenstiel; Arthur Kaser; Richard S. Blumberg

The recognition of autophagy related 16-like 1 (ATG16L1) as a genetic risk factor has exposed the critical role of autophagy in Crohn’s disease. Homozygosity for the highly prevalent ATG16L1 risk allele, or murine hypomorphic (HM) activity, causes Paneth cell dysfunction. As Atg16l1HM mice do not develop spontaneous intestinal inflammation, the mechanism(s) by which ATG16L1 contributes to disease remains obscure. Deletion of the unfolded protein response (UPR) transcription factor X-box binding protein-1 (Xbp1) in intestinal epithelial cells, the human orthologue of which harbours rare inflammatory bowel disease risk variants, results in endoplasmic reticulum (ER) stress, Paneth cell impairment and spontaneous enteritis. Unresolved ER stress is a common feature of inflammatory bowel disease epithelium, and several genetic risk factors of Crohn’s disease affect Paneth cells. Here we show that impairment in either UPR (Xbp1ΔIEC) or autophagy function (Atg16l1ΔIEC or Atg7ΔIEC) in intestinal epithelial cells results in each other’s compensatory engagement, and severe spontaneous Crohn’s-disease-like transmural ileitis if both mechanisms are compromised. Xbp1ΔIEC mice show autophagosome formation in hypomorphic Paneth cells, which is linked to ER stress via protein kinase RNA-like endoplasmic reticulum kinase (PERK), elongation initiation factor 2α (eIF2α) and activating transcription factor 4 (ATF4). Ileitis is dependent on commensal microbiota and derives from increased intestinal epithelial cell death, inositol requiring enzyme 1α (IRE1α)-regulated NF-κB activation and tumour-necrosis factor signalling, which are synergistically increased when autophagy is deficient. ATG16L1 restrains IRE1α activity, and augmentation of autophagy in intestinal epithelial cells ameliorates ER stress-induced intestinal inflammation and eases NF-κB overactivation and intestinal epithelial cell death. ER stress, autophagy induction and spontaneous ileitis emerge from Paneth-cell-specific deletion of Xbp1. Genetically and environmentally controlled UPR function within Paneth cells may therefore set the threshold for the development of intestinal inflammation upon hypomorphic ATG16L1 function and implicate ileal Crohn’s disease as a specific disorder of Paneth cells.


Journal of Experimental Medicine | 2006

Caveolin-1: a critical regulator of lung fibrosis in idiopathic pulmonary fibrosis

Xiao Mei Wang; Yingze Zhang; Hong Pyo Kim; Zhihong Zhou; Carol A. Feghali-Bostwick; Fang Liu; Emeka Ifedigbo; Xiaohui Xu; Tim D. Oury; Naftali Kaminski; Augustine M. K. Choi

Idiopathic pulmonary fibrosis (IPF) is a progressive chronic disorder characterized by activation of fibroblasts and overproduction of extracellular matrix (ECM). Caveolin-1 (cav-1), a principal component of caveolae, has been implicated in the regulation of numerous signaling pathways and biological processes. We observed marked reduction of cav-1 expression in lung tissues and in primary pulmonary fibroblasts from IPF patients compared with controls. We also demonstrated that cav-1 markedly ameliorated bleomycin (BLM)-induced pulmonary fibrosis, as indicated by histological analysis, hydroxyproline content, and immunoblot analysis. Additionally, transforming growth factor β1 (TGF-β1), the well-known profibrotic cytokine, decreased cav-1 expression in human pulmonary fibroblasts. cav-1 was able to suppress TGF-β1–induced ECM production in cultured fibroblasts through the regulation of the c-Jun N-terminal kinase (JNK) pathway. Interestingly, highly activated JNK was detected in IPF- and BLM-instilled lung tissue samples, which was dramatically suppressed by ad–cav-1 infection. Moreover, JNK1-null fibroblasts showed reduced smad signaling cascades, mimicking the effects of cav-1. This study indicates a pivotal role for cav-1 in ECM regulation and suggests a novel therapeutic target for patients with pulmonary fibrosis.


PLOS ONE | 2008

Egr-1 Regulates Autophagy in Cigarette Smoke-Induced Chronic Obstructive Pulmonary Disease

Zhihua Chen; Hong Pyo Kim; Frank C. Sciurba; Seon-Jin Lee; Carol A. Feghali-Bostwick; Donna B. Stolz; Rajiv Dhir; Rodney J. Landreneau; Mathew J. Schuchert; Samuel A. Yousem; Kiichi Nakahira; Joseph M. Pilewski; Janet S. Lee; Yingze Zhang; Stefan W. Ryter; Augustine M. K. Choi

Background Chronic obstructive pulmonary disease (COPD) is a progressive lung disease characterized by abnormal cellular responses to cigarette smoke, resulting in tissue destruction and airflow limitation. Autophagy is a degradative process involving lysosomal turnover of cellular components, though its role in human diseases remains unclear. Methodology and Principal Findings Increased autophagy was observed in lung tissue from COPD patients, as indicated by electron microscopic analysis, as well as by increased activation of autophagic proteins (microtubule-associated protein-1 light chain-3B, LC3B, Atg4, Atg5/12, Atg7). Cigarette smoke extract (CSE) is an established model for studying the effects of cigarette smoke exposure in vitro. In human pulmonary epithelial cells, exposure to CSE or histone deacetylase (HDAC) inhibitor rapidly induced autophagy. CSE decreased HDAC activity, resulting in increased binding of early growth response-1 (Egr-1) and E2F factors to the autophagy gene LC3B promoter, and increased LC3B expression. Knockdown of E2F-4 or Egr-1 inhibited CSE-induced LC3B expression. Knockdown of Egr-1 also inhibited the expression of Atg4B, a critical factor for LC3B conversion. Inhibition of autophagy by LC3B-knockdown protected epithelial cells from CSE-induced apoptosis. Egr-1 −/− mice, which displayed basal airspace enlargement, resisted cigarette-smoke induced autophagy, apoptosis, and emphysema. Conclusions We demonstrate a critical role for Egr-1 in promoting autophagy and apoptosis in response to cigarette smoke exposure in vitro and in vivo. The induction of autophagy at early stages of COPD progression suggests novel therapeutic targets for the treatment of cigarette smoke induced lung injury.

Collaboration


Dive into the Augustine M. K. Choi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hong Pyo Kim

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Seon-Jin Lee

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Leo E. Otterbein

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Rebecca M. Baron

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Emeka Ifedigbo

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yang Jin

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Hilaire C. Lam

Brigham and Women's Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge