Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Leo E. Otterbein is active.

Publication


Featured researches published by Leo E. Otterbein.


Nature Medicine | 2000

Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway.

Leo E. Otterbein; Fritz H. Bach; Jawed Alam; Miguel P. Soares; Hong-Tao Lu; Mark Allen Wysk; Roger J. Davis; Richard A. Flavell; Augustine M. K. Choi

The stress-inducible protein heme oxygenase-1 provides protection against oxidative stress. The anti-inflammatory properties of heme oxygenase-1 may serve as a basis for this cytoprotection. We demonstrate here that carbon monoxide, a by-product of heme catabolism by heme oxygenase, mediates potent anti-inflammatory effects. Both in vivo and in vitro, carbon monoxide at low concentrations differentially and selectively inhibited the expression of lipopolysaccharide-induced pro-inflammatory cytokines tumor necrosis factor-α, interleukin-1β, and macrophage inflammatory protein-1β and increased the lipopolysaccharide-induced expression of the anti-inflammatory cytokine interleukin-10. Carbon monoxide mediated these anti-inflammatory effects not through a guanylyl cyclase–cGMP or nitric oxide pathway, but instead through a pathway involving the mitogen-activated protein kinases. These data indicate the possibility that carbon monoxide may have an important protective function in inflammatory disease states and thus has potential therapeutic uses.


Nature Reviews Drug Discovery | 2010

The therapeutic potential of carbon monoxide

Roberto Motterlini; Leo E. Otterbein

Carbon monoxide (CO) is increasingly being accepted as a cytoprotective and homeostatic molecule with important signalling capabilities in physiological and pathophysiological situations. The endogenous production of CO occurs through the activity of constitutive (haem oxygenase 2) and inducible (haem oxygenase 1) haem oxygenases, enzymes that are responsible for the catabolism of haem. Through the generation of its products, which in addition to CO includes the bile pigments biliverdin, bilirubin and ferrous iron, the haem oxygenase 1 system also has an obligatory role in the regulation of the stress response and in cell adaptation to injury. This Review provides an overview of the physiology of CO, summarizes the effects of CO gas and CO-releasing molecules in preclinical animal models of cardiovascular disease, inflammatory disorders and organ transplantation, and discusses the development and therapeutic options for the exploitation of this simple gaseous molecule.


Nature Medicine | 2003

Carbon monoxide suppresses arteriosclerotic lesions associated with chronic graft rejection and with balloon injury

Leo E. Otterbein; Brian S. Zuckerbraun; Manabu Haga; Fang Liu; Ruiping Song; Anny Usheva; Christina Stachulak; Natalya Bodyak; R. Neal Smith; Eva Csizmadia; Shivraj Tyagi; Yorihiro Akamatsu; Richard J. Flavell; Timothy R. Billiar; Edith Tzeng; Fritz H. Bach; Augustine M. K. Choi; Miguel P. Soares

Carbon monoxide (CO), one of the products of heme oxygenase action on heme, prevents arteriosclerotic lesions that occur following aorta transplantation; pre-exposure to 250 parts per million of CO for 1 hour before injury suppresses stenosis after carotid balloon injury in rats as well as in mice. The protective effect of CO is associated with a profound inhibition of graft leukocyte infiltration/activation as well as with inhibition of smooth muscle cell proliferation. The anti-proliferative effect of CO in vitro requires the activation of guanylate cyclase, the generation of cGMP, the activation of p38 mitogen-activated protein kinases and the expression of the cell cycle inhibitor p21Cip1. These findings demonstrate a protective role for CO in vascular injury and support its use as a therapeutic agent.


Journal of Clinical Investigation | 1999

Exogenous administration of heme oxygenase-1 by gene transfer provides protection against hyperoxia-induced lung injury

Leo E. Otterbein; Jay K. Kolls; Lin L. Mantell; Julia L. Cook; Jawed Alam; Augustine M. K. Choi

Heme oxygenase-1 (HO-1) confers protection against a variety of oxidant-induced cell and tissue injury. In this study, we examined whether exogenous administration of HO-1 by gene transfer could also confer protection. We first demonstrated the feasibility of overexpressing HO-1 in the lung by gene transfer. A fragment of the rat HO-1 cDNA clone containing the entire coding region was cloned into plasmid pAC-CMVpLpA, and recombinant adenoviruses containing the rat HO-1 cDNA fragment Ad5-HO-1 were generated by homologous recombination. Intratracheal administration of Ad5-HO-1 resulted in a time-dependent increase in expression of HO-1 mRNA and protein in the rat lungs. Increased HO-1 protein expression was detected diffusely in the bronchiolar epithelium of rats receiving Ad5-HO-1, as assessed by immunohistochemical studies. We then examined whether ectopic expression of HO-1 could confer protection against hyperoxia-induced lung injury. Rats receiving Ad5-HO-1, but not AdV-betaGal, a recombinant adenovirus expressing Escherichia coli beta-galactosidase, before exposure to hyperoxia (>99% O2) exhibited marked reduction in lung injury, as assessed by volume of pleural effusion and histological analyses (significant reduction of edema, hemorrhage, and inflammation). In addition, rats receiving Ad5-HO-1 also exhibited increased survivability against hyperoxic stress when compared with rats receiving AdV-betaGal. Expression of the antioxidant enzymes manganese superoxide dismutase (Mn-SOD) and copper-zinc superoxide dismutase (CuZn-SOD) and of L-ferritin and H-ferritin was not affected by Ad5-HO-1 administration. Furthermore, rats treated with Ad5-HO-1 exhibited attenuation of hyperoxia-induced neutrophil inflammation and apoptosis. Taken together, these data suggest the feasibility of high-level HO-1 expression in the rat lung by gene delivery. To our knowledge, we have demonstrated for the first time that HO-1 can provide protection against hyperoxia-induced lung injury in vivo by modulation of neutrophil inflammation and lung apoptosis.


Journal of Immunology | 2001

Carbon Monoxide Generated by Heme Oxygenase-1 Suppresses the Rejection of Mouse-to-Rat Cardiac Transplants

Sato K; József Balla; Leo E. Otterbein; R. N. Smith; S. Brouard; Yuan Lin; Eva Csizmadia; Jean Sévigny; Simon C. Robson; Vercellotti G; Augustine M. K. Choi; Fritz H. Bach; Miguel P. Soares

Mouse-to-rat cardiac transplants survive long term after transient complement depletion by cobra venom factor and T cell immunosuppression by cyclosporin A. Expression of heme oxygenase-1 (HO-1) by the graft vasculature is critical to achieve graft survival. In the present study, we asked whether this protective effect was attributable to the generation of one of the catabolic products of HO-1, carbon monoxide (CO). Our present data suggests that this is the case. Under the same immunosuppressive regimen that allows mouse-to-rat cardiac transplants to survive long term (i.e., cobra venom factor plus cyclosporin A), inhibition of HO-1 activity by tin protoporphyrin, caused graft rejection in 3–7 days. Rejection was associated with widespread platelet sequestration, thrombosis of coronary arterioles, myocardial infarction, and apoptosis of endothelial cells as well as cardiac myocytes. Under inhibition of HO-1 activity by tin protoporphyrin, exogenous CO suppressed graft rejection and restored long-term graft survival. This effect of CO was associated with inhibition of platelet aggregation, thrombosis, myocardial infarction, and apoptosis. We also found that expression of HO-1 by endothelial cells in vitro inhibits platelet aggregation and protects endothelial cells from apoptosis. Both these actions of HO-1 are mediated through the generation of CO. These data suggests that HO-1 suppresses the rejection of mouse-to-rat cardiac transplants through a mechanism that involves the generation of CO. Presumably CO suppresses graft rejection by inhibiting platelet aggregation that facilitates vascular thrombosis and myocardial infarction. Additional mechanisms by which CO overcomes graft rejection may involve its ability to suppress endothelial cell apoptosis.


American Journal of Physiology-lung Cellular and Molecular Physiology | 1999

Carbon monoxide provides protection against hyperoxic lung injury

Leo E. Otterbein; Lin L. Mantell; Augustine M. K. Choi

Findings in recent years strongly suggest that the stress-inducible gene heme oxygenase (HO)-1 plays an important role in protection against oxidative stress. Although the mechanism(s) by which this protection occurs is poorly understood, we hypothesized that the gaseous molecule carbon monoxide (CO), a major by-product of heme catalysis by HO-1, may provide protection against oxidative stress. We demonstrate here that animals exposed to a low concentration of CO exhibit a marked tolerance to lethal concentrations of hyperoxia in vivo. This increased survival was associated with highly significant attenuation of hyperoxia-induced lung injury as assessed by the volume of pleural effusion, protein accumulation in the airways, and histological analysis. The lungs were completely devoid of lung airway and parenchymal inflammation, fibrin deposition, and pulmonary edema in rats exposed to hyperoxia in the presence of a low concentration of CO. Furthermore, exogenous CO completely protected against hyperoxia-induced lung injury in rats in which endogenous HO enzyme activity was inhibited with tin protoporphyrin, a selective inhibitor of HO. Rats exposed to CO also exhibited a marked attenuation of hyperoxia-induced neutrophil infiltration into the airways and total lung apoptotic index. Taken together, our data demonstrate, for the first time, that CO can be therapeutic against oxidative stress such as hyperoxia and highlight possible mechanism(s) by which CO may mediate these protective effects.


Journal of Biological Chemistry | 2003

Suppression of inflammatory cytokine production by carbon monoxide involves the JNK pathway and AP-1.

Danielle Morse; Soeren E. Pischke; Zhihong Zhou; Roger J. Davis; Richard A. Flavell; Torsten Loop; Sherrie L. Otterbein; Leo E. Otterbein; Augustine M. K. Choi

The stress-inducible protein heme oxygenase-1 provides protection against oxidative stress and modulates pro-inflammatory cytokines. As the sepsis syndrome results from the release of pro-inflammatory mediators, we postulated that heme oxygenase-1 and its enzymatic product CO would protect against lethality in a murine model of sepsis. Mice treated with a lethal dose of lipopolysaccharide (LPS) and subsequently exposed to inhaled CO had significantly better survival and lower serum interleukin (IL)-6 and IL-1β levels than their untreated counterparts. In vitro, mouse macrophages exposed to LPS and CO had significantly attenuated IL-6 production; this effect was concentration-dependent and occurred at a transcriptional level. The same effect was seen with increased endogenous CO production through overexpression of heme oxygenase-1. Mutation within the AP-1-binding site in the IL-6 promoter diminished the effect of CO on promoter activity, and treatment of macrophages with CO decreased AP-1 binding in an electrophoretic mobility shift assay. Electrophoretic mobility supershift assay indicated that the JunB, JunD, and c-Fos components of AP-1 were particularly affected. Upstream of AP-1, CO decreased JNK phosphorylation in murine macrophages and lung endothelial cells. Mice deficient in the JNK pathway had decreased serum levels of IL-6 and IL-1β in response to LPS compared with control mice, and no effect of CO on these cytokine levels was seen in Jnk1 or Jnk2 genedeleted mice. In summary, these results suggest that CO provides protection in a murine model of sepsis through modulation of inflammatory cytokine production. For the first time, the effect of CO is shown to be mediated via the JNK signaling pathway and the transcription factor AP-1.


Cell Metabolism | 2012

The sedoheptulose kinase CARKL directs macrophage polarization through control of glucose metabolism.

Arvand Haschemi; Paul Kosma; Lars Gille; Charles R. Evans; Charles F. Burant; Philipp Starkl; Bernhard Knapp; Robert Haas; Johannes A. Schmid; Christoph Jandl; Shahzada Amir; Gert Lubec; Jaehong Park; Harald Esterbauer; Martin Bilban; Leonardo Brizuela; J. Andrew Pospisilik; Leo E. Otterbein; Oswald Wagner

Summary Immune cells are somewhat unique in that activation responses can alter quantitative phenotypes upwards of 100,000-fold. To date little is known about the metabolic adaptations necessary to mount such dramatic phenotypic shifts. Screening for novel regulators of macrophage activation, we found nonprotein kinases of glucose metabolism among the most enriched classes of candidate immune modulators. We find that one of these, the carbohydrate kinase-like protein CARKL, is rapidly downregulated in vitro and in vivo upon LPS stimulation in both mice and humans. Interestingly, CARKL catalyzes an orphan reaction in the pentose phosphate pathway, refocusing cellular metabolism to a high-redox state upon physiological or artificial downregulation. We find that CARKL-dependent metabolic reprogramming is required for proper M1- and M2-like macrophage polarization and uncover a rate-limiting requirement for appropriate glucose flux in macrophage polarization.


American Journal of Pathology | 2003

Carbon Monoxide Induces Cytoprotection in Rat Orthotopic Lung Transplantation via Anti-Inflammatory and Anti-Apoptotic Effects

Ruiping Song; Masatoshi Kubo; Danielle Morse; Zhihong Zhou; Xuchen Zhang; James H. Dauber; James P. Fabisiak; Sean Alber; Simon C. Watkins; Brian S. Zuckerbraun; Leo E. Otterbein; Wen Ning; Tim D. Oury; Patty J. Lee; Kenneth R. McCurry; Augustine M. K. Choi

Successful lung transplantation has been limited by the high incidence of acute graft rejection. There is mounting evidence that the stress response gene heme oxygenase-1 (HO-1) and/or its catalytic by-product carbon monoxide (CO) confers cytoprotection against tissue and cellular injury. This led us to hypothesize that CO may protect against lung transplant rejection via its anti-inflammatory and antiapoptotic effects. Orthotopic left lung transplantation was performed in Lewis rat recipients from Brown-Norway rat donors. HO-1 mRNA and protein expression were markedly induced in transplanted rat lungs compared to sham-operated control lungs. Transplanted lungs developed severe intraalveolar hemorrhage, marked infiltration of inflammatory cells, and intravascular coagulation. However, in the presence of CO exposure (500 ppm), the gross anatomy and histology of transplanted lungs showed marked preservation. Furthermore, transplanted lungs displayed increased apoptotic cell death compared with the transplanted lungs of CO-exposed recipients, as assessed by TUNEL and caspase-3 immunostaining. CO exposure inhibited the induction of IL-6 mRNA and protein expression in lung and serum, respectively. Gene array analysis revealed that CO also down-regulated other proinflammatory genes, including MIP-1alpha and MIF, and growth factors such as platelet-derived growth factor, which were up-regulated by transplantation. These data suggest that the anti-inflammatory and antiapoptotic properties of CO confer potent cytoprotection in a rat model of lung transplantation.


Circulation | 2005

Bilirubin A Natural Inhibitor of Vascular Smooth Muscle Cell Proliferation

Robert Öllinger; Martin Bilban; Anna Erat; Alberto Froio; James McDaid; Shivraj Tyagi; Eva Csizmadia; Aurelio Vicente Graça-Souza; Angela Liloia; Miguel P. Soares; Leo E. Otterbein; Anny Usheva; Kenichiro Yamashita; Fritz H. Bach

Background—Bilirubin, a natural product of heme catabolism by heme oxygenases, was considered a toxic waste product until 1987, when its antioxidant potential was recognized. On the basis of observations that oxidative stress is a potent trigger in vascular proliferative responses, that heme oxygenase-1 is antiatherogenic, and that several studies now show that individuals with high-normal or supranormal levels of plasma bilirubin have a lesser incidence of atherosclerosis-related diseases, we hypothesized that bilirubin would have salutary effects on preventing intimal hyperplasia after balloon injury. Methods and Results—We found less balloon injury–induced neointima formation in hyperbilirubinemic Gunn rats and in wild-type rats treated with biliverdin, the precursor of bilirubin, than in controls. In vitro, bilirubin and biliverdin inhibited serum-driven smooth muscle cell cycle progression at the G1 phase via inhibition of the mitogen-activated protein kinase signal transduction pathways and inhibition of phosphorylation of the retinoblastoma tumor suppressor protein. Conclusions—Bilirubin and biliverdin might be potential therapeutics in vascular proliferative disorders.

Collaboration


Dive into the Leo E. Otterbein's collaboration.

Top Co-Authors

Avatar

Barbara Wegiel

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Fritz H. Bach

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Augustine M. K. Choi

NewYork–Presbyterian Hospital

View shared research outputs
Top Co-Authors

Avatar

Eva Csizmadia

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Beek Yoke Chin

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fang Liu

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Simon C. Robson

Beth Israel Deaconess Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge