Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Aurelie A. Boucher is active.

Publication


Featured researches published by Aurelie A. Boucher.


Neuroscience | 2010

Cognition in transmembrane domain neuregulin 1 mutant mice

Liesl Duffy; Emily Cappas; Donna Lai; Aurelie A. Boucher; Tim Karl

Neuregulin 1 (NRG1), which has been implicated in the development of schizophrenia, is expressed widely throughout the brain and influences key neurodevelopmental processes such as myelination and neuronal migration. The heterozygous transmembrane domain Nrg1 mutant mouse (Nrg1 TM HET) exhibits a neurobehavioural phenotype relevant for schizophrenia research, characterized by the development of locomotor hyperactivity, social withdrawal, increased sensitivity to environmental manipulation, and changes to the serotonergic system. As only limited data are available on the learning and memory performance of Nrg1 TM HET mice, we conducted a comprehensive examination of these mice and their wild type-like littermates in a variety of paradigms, including fear conditioning (FC), radial arm maze (RAM), Y maze, object exploration and passive avoidance (PA). Male neuregulin 1 hypomorphic mice displayed impairments in the novel object recognition and FC tasks, including reduced interest in the novel object and reduced FC to a context, but not a discrete cue. These cognitive deficits were task-specific, as no differences were seen between mutant and control mice in spatial learning (i.e. RAM and Y maze) for both working and reference memory measures, or in the PA paradigm. These findings indicate that neuregulin 1 plays a moderate role in cognition and present further behavioural validation of this genetic mouse model for the schizophrenia candidate gene neuregulin 1.


Addiction Biology | 2010

Systemically administered oxytocin decreases methamphetamine activation of the subthalamic nucleus and accumbens core and stimulates oxytocinergic neurons in the hypothalamus

Dean S. Carson; Glenn E. Hunt; Adam J. Guastella; Lachlan Barber; Jennifer L. Cornish; Jonathon C. Arnold; Aurelie A. Boucher; Iain S. McGregor

Recent preclinical evidence indicates that the neuropeptide oxytocin may have potential in the treatment of drug dependence and drug withdrawal. Oxytocin reduces methamphetamine self‐administration, conditioned place preference and hyperactivity in rodents. However, it is unclear how oxytocin acts in the brain to produce such effects. The present study examined how patterns of neural activation produced by methamphetamine were modified by co‐administered oxytocin. Male Sprague‐Dawley rats were pretreated with either 2 mg/kg oxytocin (IP) or saline and then injected with either 2 mg/kg methamphetamine (IP) or saline. After injection, locomotor activity was measured for 80 minutes prior to perfusion. As in previous studies, co‐administered oxytocin significantly reduced methamphetamine‐induced behaviors. Strikingly, oxytocin significantly reduced methamphetamine‐induced Fos expression in two regions of the basal ganglia: the subthalamic nucleus and the nucleus accumbens core. The subthalamic nucleus is of particular interest given emerging evidence for this structure in compulsive, addiction‐relevant behaviors. When administered alone, oxytocin increased Fos expression in several regions, most notably in the oxytocin‐synthesizing neurons of the supraoptic nucleus and paraventricular nucleus of the hypothalamus. This provides new evidence for central actions of peripheral oxytocin and suggests a self‐stimulation effect of exogenous oxytocin on its own hypothalamic circuitry. Overall, these results give further insight into the way in which oxytocin might moderate compulsive behaviors and demonstrate the capacity of peripherally administered oxytocin to induce widespread central effects.


Neuroscience | 2007

Heterozygous neuregulin 1 mice display greater baseline and Δ9-tetrahydrocannabinol-induced c-Fos expression

Aurelie A. Boucher; Glenn E. Hunt; Tim Karl; Jacques Micheau; Iain S. McGregor; Jonathon C. Arnold

Cannabis use may increase the risk of developing schizophrenia by precipitating the disorder in genetically vulnerable individuals. Neuregulin 1 (NRG1) is a schizophrenia susceptibility gene and mutant mice heterozygous for the transmembrane domain of this gene (Nrg1 HET mice) exhibit a schizophrenia-related phenotype. We have recently shown that Nrg1 HET mice are more sensitive to the behavioral effects of the main psychoactive constituent of cannabis, Delta(9)-tetrahydrocannabinol (THC). In the present study, we examined the effects of THC (10 mg/kg i.p.) on neuronal activity in Nrg1 HET mice and wild type-like (WT) mice using c-Fos immunohistochemistry. In the lateral septum, THC selectively increased c-Fos expression in Nrg1 HET mice with no corresponding effect being observed in WT mice. In addition, THC promoted a greater increase in c-Fos expression in Nrg1 HET mice than WT mice in the central nucleus of the amygdala, the bed nucleus of the stria terminalis and the paraventricular nucleus of the hypothalamus. Consistent with Nrg1 HET mice exhibiting a schizophrenia-related phenotype, these mice expressed greater drug-free levels of c-Fos in two regions thought to be involved in schizophrenia, the shell of the nucleus accumbens and the lateral septum. Interestingly, the effects of genotype on c-Fos expression, drug-free or following THC exposure, were only observed when animals experienced behavioral testing prior to perfusion. This suggests an interaction with stress was necessary for the promotion of these effects. These data provide neurobiological correlates for the enhanced behavioral sensitivity of Nrg1 HET mice to THC and reinforce the existence of cannabinoid-neuregulin 1 interactions in the CNS. This research may enhance our understanding of how genetic factors increase individual vulnerability to schizophrenia and cannabis-induced psychosis.


Neuroscience | 2011

Resilience and reduced c-Fos expression in P2X7 receptor knockout mice exposed to repeated forced swim test.

Aurelie A. Boucher; Jonathon C. Arnold; Glenn E. Hunt; Adena S. Spiro; Jarrah R. Spencer; C. Brown; Iain S. McGregor; Max R. Bennett; Michael Kassiou

There is considerable evidence suggesting genetic factors play an important role in the pathophysiology of depression, possibly by increasing susceptibility to repeated environmental stressors. Recent linkage studies have associated a polymorphism of the gene coding for the P2X7 receptor (P2X7R) with both major depressive disorder and bipolar disorder. Here we assessed whether P2X7 deletion affected the behavioural and neural response to repeated stress. P2X7R knockout (P2X7-/-) mice were subjected to the forced swim test for three consecutive days and neuronal activation in response to the third exposure was assessed using c-Fos immunohistochemistry. In addition, anxiety was evaluated in another group of P2X7-/- mice using the elevated plus maze (EPM) and light dark emergence (LDE) tests. Equivalent levels of immobility were observed in P2X7-/- mice and wild-type (WT) mice on the first exposure to forced swim, but much greater immobility was seen in WT mice on second and third exposures. This suggests that P2X7-/- mice exhibit an impaired adaptive coping response to repeated stress. Reinforcing this view, c-Fos expression in the dentate gyrus of the hippocampus and in the basolateral amygdala was seen in WT mice but not P2X7-/- mice following repeated forced swim. In addition, decreased locomotor activity was detected in P2X7-/- mice without any specific effects on anxiety in the LDE test. However, P2X7-/- mice showed greater anxiety-like behaviour in the EPM. These data suggest that the P2X7R may be involved in the adaptive mechanisms elicited by exposure to repeated environmental stressors that leads to the development of depression-like behaviours. This suggests that P2X7R antagonists may be useful therapeutics for the treatment of major depression, possibly by increasing resilience in the face of repeated stress.


ACS Chemical Neuroscience | 2014

The First CNS-Active Carborane: A Novel P2X7 Receptor Antagonist with Antidepressant Activity

Shane M. Wilkinson; Hendra Gunosewoyo; Melissa L. Barron; Aurelie A. Boucher; Michelle McDonnell; Peter Turner; Daniel E. Morrison; Max R. Bennett; Iain S. McGregor; Louis M. Rendina; Michael Kassiou

Relative to other polycyclic frameworks (1-3), a carborane cage (4 and Cs·5) exerts a significant biological effect as an inhibitor of the purinergic P2X7 receptor (P2X7R) which allows one to target depression in vivo and thus demonstrate, for the first time, that a carborane has the capacity to modify CNS activity.


The International Journal of Neuropsychopharmacology | 2011

The schizophrenia-susceptibility gene neuregulin 1 modulates tolerance to the effects of cannabinoids

Aurelie A. Boucher; Glenn E. Hunt; Jacques Micheau; Xu-Feng Huang; Iain S. McGregor; Tim Karl; Jonathon C. Arnold

Cannabis increases the risk of schizophrenia in genetically vulnerable individuals. In this study we aim to show that the schizophrenia susceptibility gene neuregulin 1 (Nrg1) modulates the development of tolerance to cannabinoids in mice. Nrg1 heterozygous (HET) and wild-type (WT) mice were treated daily for 15 d with the synthetic analogue of Δ9-tetrahydrocannabinol, CP55,940 (0.4 mg/kg). We measured the impact of this exposure on locomotor activity, anxiety, prepulse inhibition (PPI), body temperature and FosB/ΔFosB immunohistochemistry. Tolerance to CP55,940-induced hypothermia and locomotor suppression developed more rapidly in Nrg1 HET mice than WT mice. Conversely in the light-dark test, while tolerance to the anxiogenic effect of CP55,940 developed in WT mice over days of testing, Nrg1 hypomorphs maintained marked anxiety even after 15 d of treatment. Repeated cannabinoid exposure selectively increased FosB/ΔFosB expression in the lateral septum, ventral part (LSV) of Nrg1 HET but not WT mice. On day 1 of exposure opposite effects of CP55,940 treatment were observed on PPI, i.e. it was facilitated in Nrg1 hypomorphs and impaired in WT mice, despite the drug significantly impairing the acoustic startle reflex equally in both genotypes. These effects of CP55,940 on PPI were not maintained as both genotypes became tolerant to cannabinoid action with repeated exposure. Our results highlight that Nrg1 modulates the development of cannabinoid tolerance dependent on the parameter being measured. Furthermore, these data reinforce the notion that the VLS is an important brain region involved in Nrg1-cannabinoid interactions.


Frontiers in Cellular Neuroscience | 2013

Novel molecular changes induced by Nrg1 hypomorphism and Nrg1-cannabinoid interaction in adolescence: a hippocampal proteomic study in mice

Jarrah R. Spencer; Keturah M.E. Darbyshire; Aurelie A. Boucher; Mohammed Abul Kashem; Leonora E. Long; Iain S. McGregor; Tim Karl; Jonathon C. Arnold

Neuregulin 1 (NRG1) is linked to an increased risk of developing schizophrenia and cannabis dependence. Mice that are hypomorphic for Nrg1 (Nrg1 HET mice) display schizophrenia-relevant behavioral phenotypes and aberrant expression of serotonin and glutamate receptors. Nrg1 HET mice also display idiosyncratic responses to the main psychoactive constituent of cannabis, Δ9-tetrahydrocannabinol (THC). To gain traction on the molecular pathways disrupted by Nrg1 hypomorphism and Nrg1-cannabinoid interactions we conducted a proteomic study. Adolescent wildtype (WT) and Nrg1 HET mice were exposed to repeated injections of vehicle or THC and their hippocampi were submitted to 2D gel proteomics. Comparison of WT and Nrg1 HET mice identified proteins linked to molecular changes in schizophrenia that have not been previously associated with Nrg1. These proteins are involved in vesicular release of neurotransmitters such as SNARE proteins; enzymes impacting serotonergic neurotransmission, and proteins affecting growth factor expression. Nrg1 HET mice treated with THC expressed a distinct protein expression signature compared to WT mice. Replicating prior findings, THC caused proteomic changes in WT mice suggestive of greater oxidative stress and neurodegeneration. We have previously observed that THC selectively increased hippocampal NMDA receptor binding of adolescent Nrg1 HET mice. Here we observed outcomes consistent with heightened NMDA-mediated glutamatergic neurotransmission. This included differential expression of proteins involved in NMDA receptor trafficking to the synaptic membrane; lipid raft stabilization of synaptic NMDA receptors; and homeostatic responses to dampen excitotoxicity. These findings uncover novel proteins altered in response to Nrg1 hypomorphism and Nrg1-cannabinoid interactions that improves our molecular understanding of Nrg1 signaling and Nrg1-mediated genetic vulnerability to the neurobehavioral effects of cannabinoids.


Current Pharmaceutical Design | 2012

The yin and yang of cannabis-induced psychosis: the actions of Δ(9)-tetrahydrocannabinol and cannabidiol in rodent models of schizophrenia.

Jonathon C. Arnold; Aurelie A. Boucher; Tim Karl

The link between cannabis and psychosis has often been debated with polarized views on the topic. There is substantial epidemiological evidence showing that cannabis increases the risk of psychosis, whereas other research suggests that schizophrenia patients self-medicate with the substance. These conflicting accounts may at least be partially explained by the two phytocannabinoids cannabidiol (CBD) and Δ(9)-tetrahydrocannabinol (THC) and their opposing actions on schizophrenia-related symptoms. In the present review we will first focus on how traditional rodent models of schizophrenia have been used to improve our understanding of the propsychotic actions of THC and the antipsychotic actions of CBD. We will also review novel rodent models used to address genetic vulnerability to cannabis-induced schizophrenia and show that specific genes are being uncovered that modulate cannabinoid action (e.g. the schizophrenia susceptibility gene neuregulin 1). We will also review rodent studies that have addressed interactions between THC and CBD. These animal studies underscore great complexity with some studies showing that CBD antagonises the neurobehavioural effects of THC, while others show the opposite, that CBD potentiates the actions of THC. Various mechanisms are put forth to explain these divergent effects such as CBD antagonism at central CB1 receptors or that CBD inhibits proteins that regulate THC disposition and metabolism (e.g. the ABC transporter, P-glycoprotein).


Schizophrenia Bulletin | 2014

Partial genetic deletion of neuregulin 1 modulates the effects of stress on sensorimotor gating, dendritic morphology, and HPA axis activity in adolescent mice.

Tariq W. Chohan; Aurelie A. Boucher; Jarrah R. Spencer; Mustafa S. Kassem; Areeg Hamdi; Tim Karl; Sandra Fok; Max R. Bennett; Jonathon C. Arnold

Stress has been linked to the pathogenesis of schizophrenia. Genetic variation in neuregulin 1 (NRG1) increases the risk of developing schizophrenia and may help predict which high-risk individuals will transition to psychosis. NRG1 also modulates sensorimotor gating, a schizophrenia endophenotype. We used an animal model to demonstrate that partial genetic deletion of Nrg1 interacts with stress to promote neurobehavioral deficits of relevance to schizophrenia. Nrg1 heterozygous (HET) mice displayed greater acute stress-induced anxiety-related behavior than wild-type (WT) mice. Repeated stress in adolescence disrupted the normal development of higher prepulse inhibition of startle selectively in Nrg1 HET mice but not in WT mice. Further, repeated stress increased dendritic spine density in pyramidal neurons of the medial prefrontal cortex (mPFC) selectively in Nrg1 HET mice. Partial genetic deletion of Nrg1 also modulated the adaptive response of the hypothalamic-pituitary-adrenal axis to repeated stress, with Nrg1 HET displaying a reduced repeated stress-induced level of plasma corticosterone than WT mice. Our results demonstrate that Nrg1 confers vulnerability to repeated stress-induced sensorimotor gating deficits, dendritic spine growth in the mPFC, and an abberant endocrine response in adolescence.


Behavioural Pharmacology | 2009

Chronic treatment with Δ9-tetrahydrocannabinol impairs spatial memory and reduces zif268 expression in the mouse forebrain

Aurelie A. Boucher; Lucie Vivier; Mathilde Metna-Laurent; Laurent Brayda-Bruno; Nicole Mons; Jonathon C. Arnold; Jacques Micheau

Few studies have investigated the effects of chronic cannabinoid exposure on memory performance and whether tolerance occurs to cannabinoid-induced memory impairment. Here, we studied the effects of repeated exposure to Δ9-tetrahydrocannabinol (THC: 1 mg/kg) on spatial memory and zif268 expression in mice. One group of animals was not pretreated with THC, whereas another group was injected with 13 daily injections of THC before memory testing in the Morris water maze. Both groups were administered with THC throughout the memory-testing phase of the experiment. THC decreased spatial memory and reversal learning, even in animals that received the THC pretreatment and were tolerant to the locomotor suppressant effects of the drug. Zif268 immunoreactivity was reduced in the CA3 of the hippocampus and in the prefrontal cortex only in non-pretreated animals, indicating that although tolerance to the effects of THC on neuronal activity was evident, cannabinoid-induced memory impairment in these animals persisted even after 24 days of exposure. This study shows that after extended administration of THC, its spatial memory-impairing effects are resistant to tolerance.

Collaboration


Dive into the Aurelie A. Boucher's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tim Karl

University of Sydney

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adena S. Spiro

University of Wollongong

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter R. Schofield

Neuroscience Research Australia

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge