Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tim Karl is active.

Publication


Featured researches published by Tim Karl.


Experimental and Toxicologic Pathology | 2003

Behavioral phenotyping of mice in pharmacological and toxicological research.

Tim Karl; Reinhard Pabst; Stephan von Hörsten

The evaluation of behavioral effects is an important component for the in vivo screening of drugs or potentially toxic compounds in mice. Ideally, such screening should be composed of monitoring general health, sensory functions, and motor abilities, right before specific behavioral domains are tested. A rational strategy in the design and procedure of testing as well as an effective composition of different well-established and reproducible behavioral tests can minimize the risk of false positive and false negative results in drug screening. In the present review we describe such basic considerations in planning experiments, selecting strains of mice, and propose groups of behavioral tasks suitable for a reliable detection of differences in specific behavioral domains in mice. Screening of general health and neurophysiologic functions (reflexes, sensory abilities) and motor function (pole test, wire hang test, beam walking, rotarod, accelerod, and footprint) as well as specific hypothesis-guided testing in the behavioral domains of learning and memory (water maze, radial maze, conditioned fear, and avoidance tasks), emotionality (open field, hole board, elevated plus maze, and object exploration), nociception (tail flick, hot plate), psychiatric-like conditions (porsolt swim test, acoustic startle response, and prepulse inhibition), and aggression (isolation-induced aggression, spontaneous aggression, and territorial aggression) are described in further detail. This review is designed to describe a general approach, which increases reliability of behavioral screening. Furthermore, it provides an overview on a selection of specific procedures suitable for but not limited to behavioral screening in pharmacology and toxicology.


Diabetologia | 2006

Peptide YY ablation in mice leads to the development of hyperinsulinaemia and obesity

Dana Boey; Shu Lin; Tim Karl; Paul A. Baldock; Nicola J. Lee; Ronaldo F. Enriquez; Michelle Couzens; Katy Slack; R Dallmann; Amanda Sainsbury; Herbert Herzog

Aims/hypothesisObese people exhibit reduced circulating peptide YY (PYY) levels, but it is unclear whether this is a consequence or cause of obesity. We therefore investigated the effect of Pyy ablation on energy homeostasis.MethodsBody composition, i.p. glucose tolerance, food intake and hypothalamic neuropeptide expression were determined in Pyy knock-out and wild-type mice on a normal or high-fat diet.ResultsPyy knock-out significantly increased bodyweight and increased fat mass by 50% in aged females on a normal diet. Male chow-fed Pyy−/− mice were resistant to obesity but became significantly fatter and glucose-intolerant compared with wild-types when fed a high-fat diet. Pyy knock-out animals exhibited significantly elevated fasting or glucose-stimulated serum insulin concentrations vs wild-types, with no increase in basal or fasting-induced food intake. Pyy knock-out decreased or had no effect on neuropeptide Y expression in the arcuate nucleus of the hypothalamus, and significantly increased proopiomelanocortin expression in this region. Male but not female knock-outs exhibited significantly increased growth hormone-releasing hormone expression in the ventromedial hypothalamus and significantly elevated serum IGF-I and testosterone levels. This sex difference in activation of the hypothalamo–pituitary somatotrophic axis by Pyy ablation may contribute to the resistance of chow-fed male knock-outs to late-onset obesity.Conclusions/interpretationPYY signalling is important in the regulation of energy balance and glucose homeostasis, possibly via regulation of insulin release. Therefore reduced PYY levels may predispose to the development of obesity, particularly with ageing or under conditions of high-fat feeding.


Genes, Brain and Behavior | 2007

Altered motor activity, exploration and anxiety in heterozygous neuregulin 1 mutant mice: implications for understanding schizophrenia

Tim Karl; Liesl Duffy; Anna Scimone; Richard P. Harvey; Peter R. Schofield

Human genetic studies have shown that neuregulin 1 (NRG1) is a potential susceptibility gene for schizophrenia. Nrg1 influences various neurodevelopmental processes, which are potentially related to schizophrenia. The neurodevelopmental theory of schizophrenia suggests that interactions between genetic and environmental factors are responsible for biochemical alterations leading to schizophrenia. To investigate these interactions and to match experimental design with the pathophysiology of schizophrenia, we applied a comprehensive behavioural phenotyping strategy for motor activity, exploration and anxiety in a heterozygous Nrg1 transmembrane domain mutant mouse model (Nrg1 HET) using different housing conditions and age groups. We observed a locomotion‐ and exploration‐related hyperactive phenotype in Nrg1 HETs. Increased age had a locomotion‐ and exploration‐inhibiting effect, which was significantly attenuated in mutant mice. Environmental enrichment (EE) had a stimulating influence on locomotion and exploration. The impact of EE was more pronounced in Nrg1 hypomorphs. Our study also showed a moderate task‐specific anxiolytic‐like phenotype for Nrg1 HETs, which was influenced by external factors. The behavioural phenotype detected in heterozygous Nrg1 mutant mice is not specific to schizophrenia per se, but the increased sensitivity of mutant mice to exogenous factors is consistent with the pathophysiology of schizophrenia and the neurodevelopmental theory. Our findings reinforce the importance of carefully controlling experimental designs for external factors and of comprehensive, integrative phenotyping strategies. Thus, Nrg1 HETs may, in combination with other genetic and drug models, help to clarify pathophysiological mechanisms behind schizophrenia.


The Journal of Neuroscience | 2013

Deletion of Abca7 increases cerebral amyloid-β accumulation in the J20 mouse model of Alzheimer's disease

Woojin Scott Kim; Hongyun Li; Kalani Ruberu; Sharon L. Chan; David A. Elliott; Jac Kee Low; David Cheng; Tim Karl; Brett Garner

ATP-binding cassette transporter A7 (ABCA7) is expressed in the brain and has been detected in macrophages, microglia, and neurons. ABCA7 promotes efflux of lipids from cells to apolipoproteins and can also regulate phagocytosis and modulate processing of amyloid precursor protein (APP) to generate the Alzheimers disease (AD) amyloid-β (Aβ) peptide. Genome-wide association studies have indicated that ABCA7 single nucleotide polymorphisms confer increased risk for late-onset AD; however, the role that ABCA7 plays in the brain in the AD context is unknown. In the present study, we crossed ABCA7-deficient (A7−/−) mice with J20 amyloidogenic mice to address this issue. We show that ABCA7 loss doubled insoluble Aβ levels and thioflavine-S–positive plaques in the brain. This was not related to changes in APP processing (assessed by analysis of full-length APP and the APP β C-terminal fragment). Apolipoprotein E regulates cerebral Aβ homeostasis and plaque load; however, the apolipoprotein E concentration was not altered by ABCA7 loss. Spatial reference memory was significantly impaired in both J20 and J20/A7−/− mice compared with wild-type mice; however, there were no cognitive differences between J20 and J20/A7−/− mice. There were also no major differences detected in hippocampal or plaque-associated microglial/macrophage markers between J20 and J20/A7−/− mice, whereas the capacity for bone marrow-derived macrophages derived from A7−/− mice to take up oligomeric Aβ was reduced by 51% compared with wild-type mice. Our results suggest that ABCA7 plays a role in the regulation of Aβ homeostasis in the brain and that this may be related to altered phagocyte function.


The International Journal of Neuropsychopharmacology | 2010

A behavioural comparison of acute and chronic Δ9-tetrahydrocannabinol and cannabidiol in C57BL/6JArc mice

Leonora E. Long; Rose Chesworth; Xu-Feng Huang; Iain S. McGregor; Jonathon C. Arnold; Tim Karl

Cannabis contains over 70 unique compounds and its abuse is linked to an increased risk of developing schizophrenia. The behavioural profiles of the psychotropic cannabis constituent Delta9-tetrahydrocannabinol (Delta9-THC) and the non-psychotomimetic constituent cannabidiol (CBD) were investigated with a battery of behavioural tests relevant to anxiety and positive, negative and cognitive symptoms of schizophrenia. Male adult C57BL/6JArc mice were given 21 daily intraperitoneal injections of vehicle, Delta9-THC (0.3, 1, 3 or 10 mg/kg) or CBD (1, 5, 10 or 50 mg/kg). Delta9-THC produced the classic cannabinoid CB1 receptor-mediated tetrad of hypolocomotion, analgesia, catalepsy and hypothermia while CBD had modest hyperthermic effects. While sedative at this dose, Delta9-THC (10 mg/kg) produced locomotor-independent anxiogenic effects in the open-field and light-dark tests. Chronic CBD produced moderate anxiolytic-like effects in the open-field test at 50 mg/kg and in the light-dark test at a low dose (1 mg/kg). Acute and chronic Delta9-THC (10 mg/kg) decreased the startle response while CBD had no effect. Prepulse inhibition was increased by acute treatment with Delta9-THC (0.3, 3 and 10 mg/kg) or CBD (1, 5 and 50 mg/kg) and by chronic CBD (1 mg/kg). Chronic CBD (50 mg/kg) attenuated dexamphetamine (5 mg/kg)-induced hyperlocomotion, suggesting an antipsychotic-like action for this cannabinoid. Chronic Delta9-THC decreased locomotor activity before and after dexamphetamine administration suggesting functional antagonism of the locomotor stimulant effect. These data provide the first evidence of anxiolytic- and antipsychotic-like effects of chronic but not acute CBD in C57BL/6JArc mice, extending findings from acute studies in other inbred mouse strains and rats.


European Journal of Neuroscience | 2008

Behavioural profile of a new mouse model for NPY deficiency

Tim Karl; Liesl Duffy; Herbert Herzog

The abundantly expressed neuropeptide Y (NPY) plays an important role in anxiety and stress reactivity, as exogenous NPY administration reduces anxiety‐like behaviour in rodents. However, unlike the potent effects of NPY seen in pharmacological studies, two independent examinations of a genetic mouse model for NPY deficiency have shown only subtle, inconsistent and task‐dependent anxiety‐related phenotypes for male mutants. Here we present results of a newly developed germline NPY‐knockout model, which has been characterized behaviourally using a comprehensive multi‐tiered phenotyping strategy. Mice of both sexes were investigated in locomotion and exploration tasks, anxiety‐related paradigms, a hippocampus‐dependent memory test and a battery of basic tasks screening for sensory and motor functions. Male and female NPY‐deficient mice consistently demonstrated suppressed levels of locomotion and exploration. Furthermore, mutant mice exhibited a pronounced anxiogenic‐like phenotype when tested in spatiotemporal anxiety‐relevant paradigms (i.e. elevated‐plus maze, open field and light–dark task). Importantly, this phenotype was more pronounced in male NPY mutants, revealing a moderate sexually dimorphic impact of NPY deficiency on behaviour. Interestingly, lack of NPY did not result in impaired learning and memory in either sex. Our carefully selected comprehensive behavioural phenotyping strategy revealed a consistent hypolocomotive and sex‐dependent anxious‐like phenotype. This new NPY‐knockout mouse model reveals the importance of sex‐specific testing. It also offers a potent new model for research into anxiety‐related disorders and suggests potential treatment options for these conditions via the NPY system.


Neuroscience | 2010

Cognition in transmembrane domain neuregulin 1 mutant mice

Liesl Duffy; Emily Cappas; Donna Lai; Aurelie A. Boucher; Tim Karl

Neuregulin 1 (NRG1), which has been implicated in the development of schizophrenia, is expressed widely throughout the brain and influences key neurodevelopmental processes such as myelination and neuronal migration. The heterozygous transmembrane domain Nrg1 mutant mouse (Nrg1 TM HET) exhibits a neurobehavioural phenotype relevant for schizophrenia research, characterized by the development of locomotor hyperactivity, social withdrawal, increased sensitivity to environmental manipulation, and changes to the serotonergic system. As only limited data are available on the learning and memory performance of Nrg1 TM HET mice, we conducted a comprehensive examination of these mice and their wild type-like littermates in a variety of paradigms, including fear conditioning (FC), radial arm maze (RAM), Y maze, object exploration and passive avoidance (PA). Male neuregulin 1 hypomorphic mice displayed impairments in the novel object recognition and FC tasks, including reduced interest in the novel object and reduced FC to a context, but not a discrete cue. These cognitive deficits were task-specific, as no differences were seen between mutant and control mice in spatial learning (i.e. RAM and Y maze) for both working and reference memory measures, or in the PA paradigm. These findings indicate that neuregulin 1 plays a moderate role in cognition and present further behavioural validation of this genetic mouse model for the schizophrenia candidate gene neuregulin 1.


The International Journal of Neuropsychopharmacology | 2009

Neuregulin 1 hypomorphic mutant mice: enhanced baseline locomotor activity but normal psychotropic drug-induced hyperlocomotion and prepulse inhibition regulation

Maarten van den Buuse; Lena Wischhof; Ruo Xi Lee; Sally Martin; Tim Karl

Neuregulin 1 (Nrg1) has been widely recognized as a candidate gene for schizophrenia. This study therefore investigated mice heterozygous for a mutation in the transmembrane domain of this trophic factor (Nrg1+/- mice) in a number of behavioural test systems with relevance to schizophrenia, including psychotropic drug-induced locomotor hyperactivity and prepulse inhibition (PPI) of startle. Baseline locomotor activity in the open field or in photocell cages was slightly, but significantly enhanced in Nrg1+/- mice compared to wild-type littermate controls at age 12-16 wk, but not at age 6 months. The ability of amphetamine, phencyclidine (PCP) or MK-801 to induce locomotor hyperactivity was not significantly different between the genotypes. There was no difference in baseline PPI, startle or startle habituation and there was no difference in the effect of apomorphine, amphetamine or MK-801 on any of these parameters. Only treatment with the 5-HT1A receptor agonist 8-hydroxy-dipropylaminotetralin (8-OH-DPAT) showed a differential effect between genotypes, with a disruption of PPI occurring in Nrg1+/- mice compared to no effect in wild-type controls. This treatment also induced a significant reduction of startle which could have influenced the result. The density of dopamine D2 receptors in the forebrain and of 5-HT1A receptors in the hippocampus and raphe nuclei was not different between Nrg1+/- mice and controls. These studies add to the knowledge about behavioural effects in this mouse model of impaired Nrg1 function and suggest that a number of the behavioural tests with relevance to schizophrenia are normal in these mice.


Behavioural Brain Research | 2006

Effect of Y1 receptor deficiency on motor activity, exploration and anxiety

Tim Karl; Thomas H. J. Burne; Herbert Herzog

Neuropeptide Y (NPY) in the CNS plays an important regulatory role in anxiety-related responses as exogenous administration of NPY exerts an anxiolytic-like effect in rodents. This effect is believed to be mediated by the Y(1) receptor system as pharmacological modulation of this Y(1) receptor system results in an increase in anxiety. Here we present a comprehensive phenotyping strategy for characterizing Y(1) receptor knockout animals at different times of the circadian rhythm using several motor activity-, exploration-, and anxiety-related behavioural tasks including open field, elevated plus maze, light-dark, and hole board test. We show that Y(1) deficiency has an important effect on motor activity and explorative-like behaviours and that it results in marked alterations in anxiety-related behaviours. Importantly, the behavioural phenotype of the Y(1) receptor knockout mice is circadian rhythm-dependent and also influenced by stimuli such as restraint stress. In addition, we found evidence for increases in working memory. Taken together, these findings suggest an important role of Y(1) receptors in the regulation of motor activity, exploration, and anxiety-related behaviours. This role is also influenced by several factors such as circadian rhythm and stress exposure confirming the importance of a comprehensive strategy and of using genetic animal models in behavioural neuroscience.


Neuroscience | 2007

Heterozygous neuregulin 1 mice display greater baseline and Δ9-tetrahydrocannabinol-induced c-Fos expression

Aurelie A. Boucher; Glenn E. Hunt; Tim Karl; Jacques Micheau; Iain S. McGregor; Jonathon C. Arnold

Cannabis use may increase the risk of developing schizophrenia by precipitating the disorder in genetically vulnerable individuals. Neuregulin 1 (NRG1) is a schizophrenia susceptibility gene and mutant mice heterozygous for the transmembrane domain of this gene (Nrg1 HET mice) exhibit a schizophrenia-related phenotype. We have recently shown that Nrg1 HET mice are more sensitive to the behavioral effects of the main psychoactive constituent of cannabis, Delta(9)-tetrahydrocannabinol (THC). In the present study, we examined the effects of THC (10 mg/kg i.p.) on neuronal activity in Nrg1 HET mice and wild type-like (WT) mice using c-Fos immunohistochemistry. In the lateral septum, THC selectively increased c-Fos expression in Nrg1 HET mice with no corresponding effect being observed in WT mice. In addition, THC promoted a greater increase in c-Fos expression in Nrg1 HET mice than WT mice in the central nucleus of the amygdala, the bed nucleus of the stria terminalis and the paraventricular nucleus of the hypothalamus. Consistent with Nrg1 HET mice exhibiting a schizophrenia-related phenotype, these mice expressed greater drug-free levels of c-Fos in two regions thought to be involved in schizophrenia, the shell of the nucleus accumbens and the lateral septum. Interestingly, the effects of genotype on c-Fos expression, drug-free or following THC exposure, were only observed when animals experienced behavioral testing prior to perfusion. This suggests an interaction with stress was necessary for the promotion of these effects. These data provide neurobiological correlates for the enhanced behavioral sensitivity of Nrg1 HET mice to THC and reinforce the existence of cannabinoid-neuregulin 1 interactions in the CNS. This research may enhance our understanding of how genetic factors increase individual vulnerability to schizophrenia and cannabis-induced psychosis.

Collaboration


Dive into the Tim Karl's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brett Garner

University of Wollongong

View shared research outputs
Top Co-Authors

Avatar

Herbert Herzog

Garvan Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Rose Chesworth

Neuroscience Research Australia

View shared research outputs
Top Co-Authors

Avatar

Liesl Duffy

Garvan Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Cheng

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leonora E. Long

Neuroscience Research Australia

View shared research outputs
Top Co-Authors

Avatar

Cynthia Shannon Weickert

Neuroscience Research Australia

View shared research outputs
Researchain Logo
Decentralizing Knowledge