Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Aurélie Pascual is active.

Publication


Featured researches published by Aurélie Pascual.


Malaria Journal | 2013

Pfhrp2 and pfhrp3 polymorphisms in Plasmodium falciparum isolates from Dakar, Senegal: impact on rapid malaria diagnostic tests

Nathalie Wurtz; Bécaye Fall; Kim Bui; Aurélie Pascual; Mansour Fall; Cheikhou Camara; Bakary Diatta; Khadidiatou Ba Fall; P.S. Mbaye; Yaya Diémé; Raymond Bercion; Boubacar Wade; Sébastien Briolant; Bruno Pradines

BackgroundAn accurate diagnosis is essential for the rapid and appropriate treatment of malaria. The accuracy of the histidine-rich protein 2 (PfHRP2)-based rapid diagnostic test (RDT) Palutop+4® was assessed here. One possible factor contributing to the failure to detect malaria by this test is the diversity of the parasite PfHRP2 antigens.MethodsPfHRP2 detection with the Palutop+4® RDT was carried out. The pfhrp2 and pfhrp3 genes were amplified and sequenced from 136 isolates of Plasmodium falciparum that were collected in Dakar, Senegal from 2009 to 2011. The DNA sequences were determined and statistical analyses of the variation observed between these two genes were conducted. The potential impact of PfHRP2 and PfHRP3 sequence variation on malaria diagnosis was examined.ResultsSeven P. falciparum isolates (5.9% of the total isolates, regardless of the parasitaemia; 10.7% of the isolates with parasitaemia ≤0.005% or ≤250 parasites/μl) were undetected by the PfHRP2 Palutop+4® RDT. Low parasite density is not sufficient to explain the PfHRP2 detection failure. Three of these seven samples showed pfhrp2 deletion (2.4%). The pfhrp3 gene was deleted in 12.8%. Of the 122 PfHRP2 sequences, 120 unique sequences were identified. Of the 109 PfHRP3 sequences, 64 unique sequences were identified. Using the Baker’s regression model, at least 7.4% of the P. falciparum isolates in Dakar were likely to be undetected by PfHRP2 at a parasite density of ≤250 parasites/μl (slightly lower than the evaluated prevalence of 10.7%). This predictive prevalence increased significantly between 2009 and 2011 (P = 0.0046).ConclusionIn the present work, 10.7% of the isolates with a parasitaemia ≤0.005% (≤250 parasites/μl) were undetected by the PfHRP2 Palutop+4® RDT (7.4% by the predictive Baker’model). In addition, all of the parasites with pfhrp2 deletion (2.4% of the total samples) and 2.1% of the parasites with parasitaemia >0.005% and presence of pfhrp2 were not detected by PfHRP2 RDT. PfHRP2 is highly polymorphic in Senegal. Efforts should be made to more accurately determine the prevalence of non-sensitive parasites to pfHRP2.


Malaria Journal | 2010

A multiplex assay for the simultaneous detection of antibodies against 15 Plasmodium falciparum and Anopheles gambiae saliva antigens

Elena Ambrosino; Chloé Dumoulin; Eve Orlandi-Pradines; Franck Remoue; Aissatou Toure-Balde; Adama Tall; Jean Biram Sarr; Anne Poinsignon; Cheikh Sokhna; Karine Puget; Jean-François Trape; Aurélie Pascual; Pierre Druilhe; Thierry Fusai; Christophe Rogier

BackgroundAssessment exposure and immunity to malaria is an important step in the fight against the disease. Increased malaria infection in non-immune travellers under anti-malarial chemoprophylaxis, as well as the implementation of malaria elimination programmes in endemic countries, raises new issues that pertain to these processes. Notably, monitoring malaria immunity has become more difficult in individuals showing low antibody (Ab) responses or taking medications against the Plasmodiumfalciparum blood stages. Commonly available techniques in malaria seroepidemiology have limited sensitivity, both against pre-erythrocytic, as against blood stages of the parasite. Thus, the aim of this study was to develop a sensitive tool to assess the exposure to malaria or to bites from the vector Anopheles gambiae, despite anti-malarial prophylactic treatment.MethodsAb responses to 13 pre-erythrocytic P. falciparum-specific peptides derived from the proteins Lsa1, Lsa3, Glurp, Salsa, Trap, Starp, CSP and Pf11.1, and to 2 peptides specific for the Anopheles gambiae saliva protein gSG6 were tested. In this study, 253 individuals from three Senegalese areas with different transmission intensities and 124 European travellers exposed to malaria during a short period of time were included.ResultsThe multiplex assay was optimized for most but not all of the antigens. It was rapid, reproducible and required a small volume of serum. Proportions of Ab-positive individuals, Ab levels and the mean number of antigens (Ags) recognized by each individual increased significantly with increases in the level of malaria exposure.ConclusionThe multiplex assay developed here provides a useful tool to evaluate immune responses to multiple Ags in large populations, even when only small amounts of serum are available, or Ab titres are low, as in case of travellers. Finally, the relationship of Ab responses with malaria endemicity levels provides a way to monitor exposure in differentially exposed autochthonous individuals from various endemicity areas, as well as in travellers who are not immune, thus indirectly assessing the parasite transmission and malaria risk in the new eradication era.


Malaria Journal | 2012

Prevalence of molecular markers of Plasmodium falciparum drug resistance in Dakar, Senegal

Nathalie Wurtz; Bécaye Fall; Aurélie Pascual; Silmane Diawara; Kowry Sow; Eric Baret; Bakary Diatta; Khadidiatou Ba Fall; P.S. Mbaye; Fatou Fall; Yaya Diémé; Christophe Rogier; Raymond Bercion; Sébastien Briolant; Boubacar Wade; Bruno Pradines

BackgroundAs a result of the widespread resistance to chloroquine and sulphadoxine-pyrimethamine, artemisinin-based combination therapy (ACT) (including artemether-lumefantrine and artesunate-amodiaquine) has been recommended as a first-line anti-malarial regimen in Senegal since 2006. Intermittent preventive treatments with anti-malarial drugs based on sulphadoxine-pyrimethamine are also given to children or pregnant women once per month during the transmission season. Since 2006, there have been very few reports on the susceptibility of Plasmodium falciparum to anti-malarial drugs. To estimate the prevalence of resistance to several anti-malarial drugs since the introduction of the widespread use of ACT, the presence of molecular markers associated with resistance to chloroquine and sulphadoxine-pyrimethamine was assessed in local isolates at the military hospital of Dakar.MethodsThe prevalence of genetic polymorphisms in genes associated with anti-malarial drug resistance, i.e., Pfcrt, Pfdhfr, Pfdhps and Pfmdr1, and the copy number of Pfmdr1 were evaluated for a panel of 174 isolates collected from patients recruited at the military hospital of Dakar from 14 October 2009 to 19 January 2010.ResultsThe Pfcrt 76T mutation was identified in 37.2% of the samples. The Pfmdr1 86Y and 184F mutations were found in 16.6% and 67.6% of the tested samples, respectively. Twenty-eight of the 29 isolates with the 86Y mutation were also mutated at codon 184. Only one isolate (0.6%) had two copies of Pfmdr1. The Pfdhfr 108N/T, 51I and 59R mutations were identified in 82.4%, 83.5% and 74.1% of the samples, respectively. The double mutant (108N and 51I) was detected in 83.5% of the isolates, and the triple mutant (108N, 51I and 59R) was detected in 75.3%. The Pfdhps 437G, 436F/A and 613S mutations were found in 40.2%, 35.1% and 1.8% of the samples, respectively. There was no double mutant (437G and 540E) or no quintuple mutant (Pfdhfr 108N, 51I and 59R and Pfdhps 437G and 540E). The prevalence of the quadruple mutant (Pfdhfr 108N, 51I and 59R and Pfdhps 437G) was 36.5%.ConclusionsSince 2004, the prevalence of chloroquine resistance had decreased. The prevalence of isolates with high-level pyrimethamine resistance is 83.5%. The prevalence of isolates resistant to sulphadoxine is 40.2%. However, no quintuple mutant (Pfdhfr 108N, 51I and 59R and Pfdhps 437G and 540E), which is associated with a high level of sulphadoxine-pyrimethamine resistance, has been identified to date. The resistance to amodiaquine remains moderate.


Antimicrobial Agents and Chemotherapy | 2011

In Vitro Activity of Proveblue (Methylene Blue) on Plasmodium falciparum Strains Resistant to Standard Antimalarial Drugs

Aurélie Pascual; Maud Henry; Sébastien Briolant; Serge Charras; Eric Baret; Rémy Amalvict; Emilie Huyghues des Etages; Michel Feraud; Christophe Rogier; Bruno Pradines

ABSTRACT The geometric mean 50% inhibitory concentration (IC50) for Proveblue, a methylene blue complying with the European Pharmacopoeia, was more active on 23 P. falciparum strains than chloroquine, quinine, mefloquine, monodesethylamodiaquine, and lumefantrine. We did not find significant associations between the Proveblue IC50 and polymorphisms in the pfcrt, pfmdr1, pfmdr2, pfmrp, and pfnhe-1 genes or the copy numbers of the pfmdr1 and pfmdr2 genes, all of which are involved in antimalarial resistance.


Malaria Journal | 2012

Ex vivo activity of the ACT new components pyronaridine and piperaquine in comparison with conventional ACT drugs against isolates of Plasmodium falciparum

Aurélie Pascual; Philippe Parola; Françoise Benoit-Vical; Fabrice Simon; Denis Malvy; Stéphane Picot; Pascal Delaunay; Didier Basset; Danièle Maubon; Bernard Faugère; Guillaume Ménard; Nathalie Bourgeois; Claude Oeuvray; Eric Didillon; Christophe Rogier; Bruno Pradines

BackgroundThe aim of the present work was to assess i) ex vivo activity of pyronaridine (PND) and piperaquine (PPQ), as new components of artemisinin-based combination therapy (ACT), to define susceptibility baseline, ii) their activities compared to other partner drugs, namely monodesethylamodiaquine (MDAQ), lumefantrine (LMF), mefloquine (MQ), artesunate (AS) and dihydroartemisinin (DHA) against 181 Plasmodium falciparum isolates from African countries, India and Thailand, and iii) in vitro cross-resistance with other quinoline drugs, chloroquine (CQ) or quinine (QN).MethodsThe susceptibility of the 181 P. falciparum isolates to the nine anti-malarial drugs was assessed using the standard 42-hours 3H-hypoxanthine uptake inhibition method.ResultsThe IC50 values for PND ranged from 0.55 to 80.0 nM (geometric mean = 19.9 nM) and from 11.8 to 217.3 nM for PPQ (geometric mean = 66.8 nM). A significant positive correlation was shown between responses to PPQ and PND responses (rho = 0.46) and between PPQ and MDAQ (rho = 0.30). No significant correlation was shown between PPQ IC50 and responses to other anti-malarial drugs. A significant positive correlation was shown between responses to PND and MDAQ (rho = 0.37), PND and LMF (rho = 0.28), PND and QN (rho = 0.24), PND and AS (rho = 0.19), PND and DHA (rho = 0.18) and PND and CQ (rho = 0.16). All these coefficients of correlation are too low to suggest cross-resistance between PPQ or PND and the other drugs.ConclusionsIn this study, the excellent anti-malarial activity of PPQ and PND was confirmed. The absence of cross-resistance with quinolines and artemisinin derivatives is consistent with the efficacy of the combinations of PPQ and DHA or PND and AS in areas where parasites are resistant to conventional anti-malarial drugs.


Antimicrobial Agents and Chemotherapy | 2014

Role of Pfmdr1 in in Vitro Plasmodium falciparum Susceptibility to Chloroquine, Quinine, Monodesethylamodiaquine, Mefloquine, Lumefantrine and Dihydroartemisinin

Nathalie Wurtz; Bécaye Fall; Aurélie Pascual; Mansour Fall; Eric Baret; Cheikhou Camara; Aminata Nakoulima; Bakary Diatta; Khadidiatou Ba Fall; P.S. Mbaye; Yaya Diémé; Raymond Bercion; Boubacar Wade; Bruno Pradines

ABSTRACT The involvement of Pfmdr1 (Plasmodium falciparum multidrug resistance 1) polymorphisms in antimalarial drug resistance is still debated. Here, we evaluate the association between polymorphisms in Pfmdr1 (N86Y, Y184F, S1034C, N1042D, and D1246Y) and Pfcrt (K76T) and in vitro responses to chloroquine (CQ), mefloquine (MQ), lumefantrine (LMF), quinine (QN), monodesethylamodiaquine (MDAQ), and dihydroartemisinin (DHA) in 174 Plasmodium falciparum isolates from Dakar, Senegal. The Pfmdr1 86Y mutation was identified in 14.9% of the samples, and the 184F mutation was identified in 71.8% of the isolates. No 1034C, 1042N, or 1246Y mutations were detected. The Pfmdr1 86Y mutation was significantly associated with increased susceptibility to MDAQ (P = 0.0023), LMF (P = 0.0001), DHA (P = 0.0387), and MQ (P = 0.00002). The N86Y mutation was not associated with CQ (P = 0.214) or QN (P = 0.287) responses. The Pfmdr1 184F mutation was not associated with various susceptibility responses to the 6 antimalarial drugs (P = 0.168 for CQ, 0.778 for MDAQ, 0.324 for LMF, 0.961 for DHA, 0.084 for QN, and 0.298 for MQ). The Pfmdr1 86Y-Y184 haplotype was significantly associated with increased susceptibility to MDAQ (P = 0.0136), LMF (P = 0.0019), and MQ (P = 0.0001). The additional Pfmdr1 86Y mutation increased significantly the in vitro susceptibility to MDAQ (P < 0.0001), LMF (P < 0.0001), MQ (P < 0.0001), and QN (P = 0.0026) in wild-type Pfcrt K76 parasites. The additional Pfmdr1 86Y mutation significantly increased the in vitro susceptibility to CQ (P = 0.0179) in Pfcrt 76T CQ-resistant parasites.


Antimicrobial Agents and Chemotherapy | 2012

Proveblue (Methylene Blue) as an Antimalarial Agent: In Vitro Synergy with Dihydroartemisinin and Atorvastatin

Jérôme Dormoi; Aurélie Pascual; Sébastien Briolant; Rémy Amalvict; Serge Charras; Eric Baret; Emilie Huyghues des Etages; Michel Feraud; Bruno Pradines

Proveblue (international patent PCT/FR/2007/001193), which is a methylene blue preparation that complies with the European Pharmacopoeia and contains limited organic impurities and heavy metals of recognized toxicity, has previously been demonstrated to possess in vitro antimalarial activity (at a


PLOS ONE | 2011

Relationship between Exposure to Vector Bites and Antibody Responses to Mosquito Salivary Gland Extracts

Albin Fontaine; Aurélie Pascual; Eve Orlandi-Pradines; Ibrahima Diouf; Franck Remoue; Frédéric Pagès; Thierry Fusai; Christophe Rogier; Lionel Almeras

Mosquito-borne diseases are major health problems worldwide. Serological responses to mosquito saliva proteins may be useful in estimating individual exposure to bites from mosquitoes transmitting these diseases. However, the relationships between the levels of these IgG responses and mosquito density as well as IgG response specificity at the genus and/or species level need to be clarified prior to develop new immunological markers to assess human/vector contact. To this end, a kinetic study of antibody levels against several mosquito salivary gland extracts from southeastern French individuals living in three areas with distinct ecological environments and, by implication, distinct Aedes caspius mosquito densities were compared using ELISA. A positive association was observed between the average levels of IgG responses against Ae. caspius salivary gland extracts and spatial Ae. caspius densities. Additionally, the average level of IgG responses increased significantly during the peak exposure to Ae. caspius at each site and returned to baseline four months later, suggesting short-lived IgG responses. The species-specificity of IgG antibody responses was determined by testing antibody responses to salivary gland extracts from Cx. pipiens, a mosquito that is present at these three sites at different density levels, and from two other Aedes species not present in the study area (Ae. aegypti and Ae. albopictus). The IgG responses observed against these mosquito salivary gland extracts contrasted with those observed against Ae. caspius salivary gland extracts, supporting the existence of species-specific serological responses. By considering different populations and densities of mosquitoes linked to environmental factors, this study shows, for the first time, that specific IgG antibody responses against Ae. caspius salivary gland extracts may be related to the seasonal and geographical variations in Ae. caspius density. Characterisation of such immunological-markers may allow the evaluation of the effectiveness of vector-control strategies or estimation of the risk of vector-borne disease transmission.


Malaria Journal | 2011

Use of the atmospheric generators for capnophilic bacteria Genbag-CO2 for the evaluation of in vitro Plasmodium falciparum susceptibility to standard anti-malarial drugs

Aurélie Pascual; Leonardo K. Basco; Eric Baret; Rémy Amalvict; Dominique Travers; Christophe Rogier; Bruno Pradines

BackgroundThe aim of this study was to evaluate the cultivation system in which the proper atmospheric conditions for growing Plasmodium falciparum parasites were maintained in a sealed bag. The Genbag® system associated with the atmospheric generators for capnophilic bacteria Genbag CO2® was used for in vitro susceptibility test of nine standard anti-malarial drugs and compared to standard incubator conditions.MethodsThe susceptibility of 36 pre-identified parasite strains from a wide panel of countries was assessed for nine standard anti-malarial drugs (chloroquine, quinine, mefloquine, monodesethylamodiaquine, lumefantrine, dihydroartemisinin, atovaquone and pyrimethamine) by the standard 42-hour 3H-hypoxanthine uptake inhibition method using the Genbag CO2® system and compared to controlled incubator conditions (5% CO2 and 10% O2).ResultsThe counts per minute values in the control wells in incubator atmospheric conditions (5% CO2 and 10% O2) were significantly higher than those of Genbag® conditions (2738 cpm vs 2282 cpm, p < 0.0001). The geometric mean IC50 estimated under the incubator atmospheric conditions was significantly lower for atovaquone (1.2 vs 2.1 nM, p = 0.0011) and higher for the quinolines: chloroquine (127 vs 94 nM, p < 0.0001), quinine (580 vs 439 nM, p < 0.0001), monodesethylamodiaquine (41.4 vs 31.8 nM, p < 0.0001), mefloquine (57.5 vs 49.7 nM, p = 0.0011) and lumefantrine (23.8 vs 21.2 nM, p = 0.0044). There was no significant difference of IC50 between the 2 conditions for dihydroartemisinin, doxycycline and pyrimethamine.To reduce this difference in term of anti-malarial susceptibility, a specific cut-off was estimated for each drug under Genbag® conditions by regression. The cut-off was estimated at 77 nM for chloroquine (vs 100 nM in 10% O2), 611 nM for quinine (vs 800 nM), 30 nM for mefloquine (vs 30 nM), 61 nM for monodesethylamodiaquine (vs 80 nM) and 1729 nM for pyrimethamine (vs 2000 nM).ConclusionsThe atmospheric generators for capnophilic bacteria Genbag CO2® is an appropriate technology that can be transferred to the field for epidemiological surveys of drug-resistant malaria. The present data suggest the importance of the gas mixture on in vitro microtest results for anti-malarial drugs and the importance of determining the microtest conditions before comparing and analysing the data from different laboratories and concluding on malaria resistance.


Journal of Neuroscience Methods | 2009

In vitro isolation of neural precursor cells from the adult pig subventricular zone

Olivier Liard; Stéphanie Segura; Aurélie Pascual; Pierrette Gaudreau; Thierry Fusai; Emmanuel Moyse

In order to improve cell therapy techniques, we have characterized a multipotent neural precursor cell isolation technique from the subventricular zone of adult pig brain. The pig is a non-primate species that is immunologically closest to human. The proliferative zone of this neurogenic structure was first localized in situ in the pig brain by Ki-67 immunohistochemistry, as a ventral subfield of the Nissl-stained subventricular zone. For in vitro cultures, the striatal forebrain was sampled from deeply anaesthetized adult pigs and SVZ tissue explants were immediately microdissected out and dissociated in the appropriate medium. Primary cell culture in the presence of EGF and bFGF allowed growth of spherical masses that exhibited sustained growth and self-renewal capacity through six subsequent passages. Molecular characterization using reverse transcription-polymerase chain reaction (RT-PCR) showed that expanded pro-differentiating neurospheres expressed markers of proliferation, neural stem cells, and committed neural progenitors. After growth factor removal, the spheres became adherent and were shown to contain the three neural cell lineages by triple immunocytofluorescence and confocal microscopy. The present protocol therefore allowed for in vitro expansion of pig brain primary cells that display capacities for proliferation, self-renewal, and multipotency, i.e., the cardinal features of multipotent neural precursor cells.

Collaboration


Dive into the Aurélie Pascual's collaboration.

Top Co-Authors

Avatar

Bruno Pradines

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nathalie Wurtz

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar

Eric Baret

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Frédéric Pagès

Institut de veille sanitaire

View shared research outputs
Top Co-Authors

Avatar

Nicolas Taudon

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar

Rémy Amalvict

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar

Thierry Fusai

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge