Aurélien Capitan
Institut national de la recherche agronomique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Aurélien Capitan.
Nature Genetics | 2014
Hans D. Daetwyler; Aurélien Capitan; Hubert Pausch; Paul Stothard; Rianne van Binsbergen; Rasmus Froberg Brøndum; Xiaoping Liao; Anis Djari; Sabrina Rodriguez; Cécile Grohs; Diane Esquerre; Olivier Bouchez; Marie-Noëlle Rossignol; Christophe Klopp; Dominique Rocha; Sébastien Fritz; A. Eggen; Phil J. Bowman; David Coote; Amanda J. Chamberlain; Charlotte Anderson; Curt P VanTassell; Ina Hulsegge; Michael E. Goddard; Bernt Guldbrandtsen; Mogens Sandø Lund; Roel F. Veerkamp; Didier Boichard; Ruedi Fries; Ben J. Hayes
The 1000 bull genomes project supports the goal of accelerating the rates of genetic gain in domestic cattle while at the same time considering animal health and welfare by providing the annotated sequence variants and genotypes of key ancestor bulls. In the first phase of the 1000 bull genomes project, we sequenced the whole genomes of 234 cattle to an average of 8.3-fold coverage. This sequencing includes data for 129 individuals from the global Holstein-Friesian population, 43 individuals from the Fleckvieh breed and 15 individuals from the Jersey breed. We identified a total of 28.3 million variants, with an average of 1.44 heterozygous sites per kilobase for each individual. We demonstrate the use of this database in identifying a recessive mutation underlying embryonic death and a dominant mutation underlying lethal chrondrodysplasia. We also performed genome-wide association studies for milk production and curly coat, using imputed sequence variants, and identified variants associated with these traits in cattle.
PLOS ONE | 2013
Sébastien Fritz; Aurélien Capitan; Anis Djari; Sabrina Rodriguez; A. Barbat; Aurélia Baur; Cécile Grohs; Bernard Weiss; Mekki Boussaha; Diane Esquerre; Christophe Klopp; Dominique Rocha; Didier Boichard
The regular decrease of female fertility over time is a major concern in modern dairy cattle industry. Only half of this decrease is explained by indirect response to selection on milk production, suggesting the existence of other factors such as embryonic lethal genetic defects. Genomic regions harboring recessive deleterious mutations were detected in three dairy cattle breeds by identifying frequent haplotypes (>1%) showing a deficit in homozygotes among Illumina Bovine 50k Beadchip haplotyping data from the French genomic selection database (47,878 Holstein, 16,833 Montbéliarde, and 11,466 Normande animals). Thirty-four candidate haplotypes (p<10−4) including previously reported regions associated with Brachyspina, CVM, HH1, and HH3 in Holstein breed were identified. Haplotype length varied from 1 to 4.8 Mb and frequencies from 1.7 up to 9%. A significant negative effect on calving rate, consistent in heifers and in lactating cows, was observed for 9 of these haplotypes in matings between carrier bulls and daughters of carrier sires, confirming their association with embryonic lethal mutations. Eight regions were further investigated using whole genome sequencing data from heterozygous bull carriers and control animals (45 animals in total). Six strong candidate causative mutations including polymorphisms previously reported in FANCI (Brachyspina), SLC35A3 (CVM), APAF1 (HH1) and three novel mutations with very damaging effect on the protein structure, according to SIFT and Polyphen-2, were detected in GART, SHBG and SLC37A2 genes. In conclusion, this study reveals a yet hidden consequence of the important inbreeding rate observed in intensively selected and specialized cattle breeds. Counter-selection of these mutations and management of matings will have positive consequences on female fertility in dairy cattle.
PLOS ONE | 2013
Aurélie Allais-Bonnet; Cécile Grohs; Ivica Medugorac; Stefan Krebs; Anis Djari; Alexander Graf; Sébastien Fritz; Doris Seichter; Aurélia Baur; Ingolf Russ; Stephan Bouet; Sophie Rothammer; Per Wahlberg; Diane Esquerre; Chris Hoze; Mekki Boussaha; Bernard Weiss; Dominique Thepot; Marie-Noëlle Fouilloux; Marie-Noëlle Rossignol; Este Van Marle-Koster; Gunnfríður Elín Hreiðarsdóttir; Sarah Barbey; Dominique Dozias; Emilie Cobo; Patrick Reversé; Olivier Catros; Jean-Luc Marchand; Pascal Soulas; Pierre Roy
Despite massive research efforts, the molecular etiology of bovine polledness and the developmental pathways involved in horn ontogenesis are still poorly understood. In a recent article, we provided evidence for the existence of at least two different alleles at the Polled locus and identified candidate mutations for each of them. None of these mutations was located in known coding or regulatory regions, thus adding to the complexity of understanding the molecular basis of polledness. We confirm previous results here and exhaustively identify the causative mutation for the Celtic allele (PC) and four candidate mutations for the Friesian allele (PF). We describe a previously unreported eyelash-and-eyelid phenotype associated with regular polledness, and present unique histological and gene expression data on bovine horn bud differentiation in fetuses affected by three different horn defect syndromes, as well as in wild-type controls. We propose the ectopic expression of a lincRNA in PC/p horn buds as a probable cause of horn bud agenesis. In addition, we provide evidence for an involvement of OLIG2, FOXL2 and RXFP2 in horn bud differentiation, and draw a first link between bovine, ovine and caprine Polled loci. Our results represent a first and important step in understanding the genetic pathways and key process involved in horn bud differentiation in Bovidae.
PLOS ONE | 2011
Aurélien Capitan; Cécile Grohs; Bernard Weiss; Marie-Noelle Rossignol; Patrick Reversé; A. Eggen
The developmental pathways involved in horn development are complex and still poorly understood. Here we report the description of a new dominant inherited syndrome in the bovine Charolais breed that we have named type 2 scurs. Clinical examination revealed that, despite a strong phenotypic variability, all affected individuals show both horn abnormalities similar to classical scurs phenotype and skull interfrontal suture synostosis. Based on a genome-wide linkage analysis using Illumina BovineSNP50 BeadChip genotyping data from 57 half-sib and full-sib progeny, this locus was mapped to a 1.7 Mb interval on bovine chromosome 4. Within this region, the TWIST1 gene encoding a transcription factor was considered as a strong candidate gene since its haploinsufficiency is responsible for the human Saethre-Chotzen syndrome, characterized by skull coronal suture synostosis. Sequencing of the TWIST1 gene identified a c.148_157dup (p.A56RfsX87) frame-shift mutation predicted to completely inactivate this gene. Genotyping 17 scurred and 20 horned founders of our pedigree as well as 48 unrelated horned controls revealed a perfect association between this mutation and the type 2 scurs phenotype. Subsequent genotyping of 32 individuals born from heterozygous parents showed that homozygous mutated progeny are completely absent, which is consistent with the embryonic lethality reported in Drosophila and mouse suffering from TWIST1 complete insufficiency. Finally, data from previous studies on model species and a fine description of type 2 scurs symptoms allowed us to propose different mechanisms to explain the features of this syndrome. In conclusion, this first report on the identification of a potential causal mutation affecting horn development in cattle offers a unique opportunity to better understand horn ontogenesis.
Genetics | 2016
Simon Boitard; Mekki Boussaha; Aurélien Capitan; Dominique Rocha; Bertrand Servin
Detecting the molecular basis of adaptation is one of the major questions in population genetics. With the advance in sequencing technologies, nearly complete interrogation of genome-wide polymorphisms in multiple populations is becoming feasible in some species, with the expectation that it will extend quickly to new ones. Here, we investigate the advantages of sequencing for the detection of adaptive loci in multiple populations, exploiting a recently published data set in cattle (Bos taurus). We used two different approaches to detect statistically significant signals of positive selection: a within-population approach aimed at identifying hard selective sweeps and a population-differentiation approach that can capture other selection events such as soft or incomplete sweeps. We show that the two methods are complementary in that they indeed capture different kinds of selection signatures. Our study confirmed some of the well-known adaptive loci in cattle (e.g., MC1R, KIT, GHR, PLAG1, NCAPG/LCORL) and detected some new ones (e.g., ARL15, PRLR, CYP19A1, PPM1L). Compared to genome scans based on medium- or high-density SNP data, we found that sequencing offered an increased detection power and a higher resolution in the localization of selection signatures. In several cases, we could even pinpoint the underlying causal adaptive mutation or at least a very small number of possible candidates (e.g., MC1R, PLAG1). Our results on these candidates suggest that a vast majority of adaptive mutations are likely to be regulatory rather than protein-coding variants.
BMC Genetics | 2009
Aurélien Capitan; Cécile Grohs; Mathieu Gautier; A. Eggen
BackgroundPolled animals are valued in cattle industry because the absence of horns has a significant economic impact. However, some cattle are neither polled nor horned but have so-called scurs on their heads, which are corneous growths loosely attached to the skull. A better understanding of the genetic determinism of the scurs phenotype would help to fine map the polled locus. To date, only one study has attempted to map the scurs locus in cattle. Here, we have investigated the inheritance of the scurs phenotype in the French Charolais breed and examined whether the previously proposed localisation of the scurs locus on bovine chromosome 19 could be confirmed or not.ResultsOur results indicate that the inheritance pattern of the scurs phenotype in the French Charolais breed is autosomal recessive with complete penetrance in both sexes, which is different from what is reported for other breeds. The frequency of the scurs allele (Sc) reaches 69.9% in the French Charolais population. Eleven microsatellite markers on bovine chromosome 19 were genotyped in 267 offspring (33 half-sib and full-sib families). Both non-parametric and parametric linkage analyses suggest that in the French Charolais population the scurs locus may not map to the previously identified region. A new analysis of an Angus-Hereford and Hereford-Hereford pedigree published in 1978 enabled us to calculate the frequency of the Sc allele in the Hereford breed (89.4%) and to study the penetrance of this allele in males heterozygous for both polled and scurs loci (40%). This led us to revise the inheritance pattern of the scurs phenotype proposed for the Hereford breed and to suggest that allele Sc is not fully but partially dominant in double heterozygous males while it is always recessive in females. Crossbreeding involving the Charolais breed and other breeds gave results similar to those reported in the Hereford breed.ConclusionOur results suggest the existence of unknown genetics factors modifying the expression of the scurs locus in double heterozygous Hereford and Angus males. The specific inheritance pattern of the scurs locus in the French Charolais breed represents an opportunity to map this gene and to identify the molecular mechanisms regulating the growth of horns in cattle.
PLOS ONE | 2012
Aurélien Capitan; Aurélie Allais-Bonnet; Alain Pinton; Brigitte Marquant-Le Guienne; Daniel Le Bourhis; Cécile Grohs; Stephan Bouet; Laëtitia Clément; Laura Salas-Cortés; Eric Venot; Stéphane Chaffaux; Bernard Weiss; Arnaud Delpeuch; Guy Noé; Marie-Noelle Rossignol; Sarah Barbey; Dominique Dozias; Emilie Cobo; Harmonie Barasc; Aurélie Auguste; Maëlle Pannetier; Marie-Christine Deloche; Emeline Lhuilier; Olivier Bouchez; Diane Esquerre; Gerald Salin; Christophe Klopp; Cécile Donnadieu; Céline Chantry-Darmon; H. Hayes
Polled and Multisystemic Syndrome (PMS) is a novel developmental disorder occurring in the progeny of a single bull. Its clinical spectrum includes polledness (complete agenesis of horns), facial dysmorphism, growth delay, chronic diarrhea, premature ovarian failure, and variable neurological and cardiac anomalies. PMS is also characterized by a deviation of the sex-ratio, suggesting male lethality during pregnancy. Using Mendelian error mapping and whole-genome sequencing, we identified a 3.7 Mb deletion on the paternal bovine chromosome 2 encompassing ARHGAP15, GTDC1 and ZEB2 genes. We then produced control and affected 90-day old fetuses to characterize this syndrome by histological and expression analyses. Compared to wild type individuals, affected animals showed a decreased expression of the three deleted genes. Based on a comparison with human Mowat-Wilson syndrome, we suggest that deletion of ZEB2, is responsible for most of the effects of the mutation. Finally sperm-FISH, embryo genotyping and analysis of reproduction records confirmed somatic mosaicism in the founder bull and male-specific lethality during the first third of gestation. In conclusion, we identified a novel locus involved in bovid horn ontogenesis and suggest that epithelial-to-mesenchymal transition plays a critical role in horn bud differentiation. We also provide new insights into the pathogenicity of ZEB2 loss of heterozygosity in bovine and humans and describe the first case of male-specific lethality associated with an autosomal locus in a non-murine mammalian species. This result sets PMS as a unique model to study sex-specific gene expression/regulation.
Nature Genetics | 2017
Ivica Medugorac; Alexander Graf; Cécile Grohs; Sophie Rothammer; Yondon Zagdsuren; Elena A. Gladyr; N.A. Zinovieva; Johanna Barbieri; Doris Seichter; Ingolf Russ; A. Eggen; Garrett Hellenthal; G. Brem; Helmut Blum; Stefan Krebs; Aurélien Capitan
The yak is remarkable for its adaptation to high altitude and occupies a central place in the economies of the mountainous regions of Asia. At lower elevations, it is common to hybridize yaks with cattle to combine the yaks hardiness with the productivity of cattle. Hybrid males are sterile, however, preventing the establishment of stable hybrid populations, but not a limited introgression after backcrossing several generations of female hybrids to male yaks. Here we inferred bovine haplotypes in the genomes of 76 Mongolian yaks using high-density SNP genotyping and whole-genome sequencing. These yaks inherited ∼1.3% of their genome from bovine ancestors after nearly continuous admixture over at least the last 1,500 years. The introgressed regions are enriched in genes involved in nervous system development and function, and particularly in glutamate metabolism and neurotransmission. We also identified a novel mutation associated with a polled (hornless) phenotype originating from Mongolian Turano cattle. Our results suggest that introgressive hybridization contributed to the improvement of yak management and breeding.
Nature Genetics | 2018
Aniek C. Bouwman; Hans D. Daetwyler; Amanda J. Chamberlain; Carla Hurtado Ponce; Mehdi Sargolzaei; F.S. Schenkel; Goutam Sahana; Armelle Govignon-Gion; Simon Boitard; M. Dolezal; Hubert Pausch; Rasmus Froberg Brøndum; Phil J. Bowman; Bo Thomsen; Bernt Guldbrandtsen; Mogens Sandø Lund; Bertrand Servin; Dorian J. Garrick; James M. Reecy; Johanna Vilkki; A. Bagnato; Min Wang; Jesse L. Hoff; Robert D. Schnabel; Jeremy F. Taylor; Anna A. E. Vinkhuyzen; Frank Panitz; Christian Bendixen; Lars-Erik Holm; Birgit Gredler
Stature is affected by many polymorphisms of small effect in humans1. In contrast, variation in dogs, even within breeds, has been suggested to be largely due to variants in a small number of genes2,3. Here we use data from cattle to compare the genetic architecture of stature to those in humans and dogs. We conducted a meta-analysis for stature using 58,265 cattle from 17 populations with 25.4 million imputed whole-genome sequence variants. Results showed that the genetic architecture of stature in cattle is similar to that in humans, as the lead variants in 163 significantly associated genomic regions (P < 5 × 10−8) explained at most 13.8% of the phenotypic variance. Most of these variants were noncoding, including variants that were also expression quantitative trait loci (eQTLs) and in ChIP–seq peaks. There was significant overlap in loci for stature with humans and dogs, suggesting that a set of common genes regulates body size in mammals.Meta-analysis of data from 58,265 cattle shows that the genetic architecture underlying stature is similar to that in humans, where many genomic regions individually explain only a small amount of phenotypic variance.
Journal of Dairy Science | 2016
M.P. Sanchez; Armelle Govignon-Gion; M. Ferrand; M. Gelé; D. Pourchet; Y. Amigues; S. Fritz; Mekki Boussaha; Aurélien Capitan; Dominique Rocha; G. Miranda; P. Martin; M. Brochard; Didier Boichard
In the context of the PhénoFinLait project, a genome-wide analysis was performed to detect quantitative trait loci (QTL) that affect milk protein composition estimated using mid-infrared spectrometry in the Montbéliarde (MO), Normande (NO), and Holstein (HO) French dairy cattle breeds. The 6 main milk proteins (α-lactalbumin, β-lactoglobulin, and αS1-, αS2-, β-, and κ-caseins) expressed as grams per 100g of milk (% of milk) or as grams per 100g of protein (% of protein) were estimated in 848,068 test-day milk samples from 156,660 cows. Genotyping was performed for 2,773 MO, 2,673 NO, and 2,208 HO cows using the Illumina BovineSNP50 BeadChip (Illumina Inc., San Diego, CA). Individual test-day records were adjusted for environmental effects and then averaged per cow to define the phenotypes analyzed. Quantitative trait loci detection was performed within each breed using a linkage disequilibrium and linkage analysis approach. A total of 39 genomic regions distributed on 20 of the 29 Bos taurus autosomes (BTA) were significantly associated with milk protein composition at a genome-wide level of significance in at least 1 of the 3 breeds. The 9 most significant QTL were located on BTA2 (133 Mbp), BTA6 (38, 47, and 87 Mbp), BTA11 (103 Mbp), BTA14 (1.8 Mbp), BTA20 (32 and 58 Mbp), and BTA29 (8 Mbp). The BTA6 (87 Mbp), BTA11, and BTA20 (58 Mbp) QTL were found in all 3 breeds, and they had highly significant effects on κ-casein, β-lactoglobulin, and α-lactalbumin, expressed as a percentage of protein, respectively. Each of these QTL explained between 13% (BTA14) and 51% (BTA11) of the genetic variance of the trait. Many other QTL regions were also identified in at least one breed. They were located on 14 additional chromosomes (1, 3, 4, 5, 7, 15, 17, 19, 21, 22, 24, 25, 26, and 27), and they explained 2 to 8% of the genetic variance of 1 or more protein composition traits. Concordance analyses, performed between QTL status and sequence-derived polymorphisms from 13 bulls, revealed previously known causal polymorphisms in LGB (BTA11) and GHR (BTA20 at 32 Mbp) and excluded some other previously described mutations. These results constitute a first step in identifying causal mutations and using routinely collected mid-infrared predictions in future genomic selection programs to improve bovine milk protein composition.