Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Didier Boichard is active.

Publication


Featured researches published by Didier Boichard.


Comptes Rendus Biologies | 2016

Genomic selection in domestic animals: Principles, applications and perspectives.

Didier Boichard; V. Ducrocq; Pascal Croiseau; Sébastien Fritz

The principles of genomic selection are described, with the main factors affecting its efficiency and the assumptions underlying the different models proposed. The reasons of its fast adoption in dairy cattle are explained and the conditions of its application to other species are discussed. Perspectives of development include: selection for new traits and new breeding objectives; adoption of more robust approaches based on information on causal variants; predictions of genotype×environment interactions.


Genetics Selection Evolution | 2016

Sequence variants selected from a multi-breed GWAS can improve the reliability of genomic predictions in dairy cattle

Irene van den Berg; Didier Boichard; Mogens Sandø Lund

BackgroundSequence data can potentially increase the reliability of genomic predictions, because such data include causative mutations instead of relying on linkage disequilibrium (LD) between causative mutations and prediction variants. However, the location of the causative mutations is not known, and the presence of many variants that are in low LD with the causative mutations may reduce prediction reliability. Our objective was to investigate whether the use of variants at quantitative trait loci (QTL) that are identified in a multi-breed genome-wide association study (GWAS) for milk, fat and protein yield would increase the reliability of within- and multi-breed genomic predictions in Holstein, Jersey and Danish Red cattle. A wide range of scenarios that test different strategies to select prediction markers, for both within-breed and multi-breed prediction, were compared.ResultsFor all breeds and traits, the use of variants selected from a multi-breed GWAS resulted in substantial increases in prediction reliabilities compared to within-breed prediction using a 50xa0K SNP array. Reliabilities depended highly on the choice of the prediction markers, and the scenario that led to the highest reliability varied between breeds and traits. While genomic correlations across breeds were low for genome-wide sequence variants, the effects of the QTL variants that yielded the highest reliabilities were highly correlated across breeds.ConclusionsOur results show that the use of sequence variants, which are located near peaks of QTL that are detected in a multi-breed GWAS, can increase reliability of genomic predictions.


Journal of Dairy Science | 2016

Comparing power and precision of within-breed and multibreed genome-wide association studies of production traits using whole-genome sequence data for 5 French and Danish dairy cattle breeds

Irene van den Berg; Didier Boichard; Mogens Sandø Lund

The objective of this study was to compare mapping precision and power of within-breed and multibreed genome-wide association studies (GWAS) and to compare the results obtained by the multibreed GWAS with 3 meta-analysis methods. The multibreed GWAS was expected to improve mapping precision compared with a within-breed GWAS because linkage disequilibrium is conserved over shorter distances across breeds than within breeds. The multibreed GWAS was also expected to increase detection power for quantitative trait loci (QTL) segregating across breeds. GWAS were performed for production traits in dairy cattle, using imputed full genome sequences of 16,031 bulls, originating from 6 French and Danish dairy cattle populations. Our results show that a multibreed GWAS can be a valuable tool for the detection and fine mapping of quantitative trait loci. The number of QTL detected with the multibreed GWAS was larger than the number detected by the within-breed GWAS, indicating an increase in power, especially when the 2 Holstein populations were combined. The largest number of QTL was detected when all populations were combined. The analysis combining all breeds was, however, dominated by Holstein, and QTL segregating in other breeds but not in Holstein were sometimes overshadowed by larger QTL segregating in Holstein. Therefore, the GWAS combining all breeds except Holstein was useful to detect such peaks. Combining all breeds except Holstein resulted in smaller QTL intervals on average, but this outcome was not the case when the Holstein populations were included in the analysis. Although no decrease in the average QTL size was observed, mapping precision did improve for several QTL. Out of 3 different multibreed meta-analysis methods, the weighted z-scores model resulted in the most similar results to the full multibreed GWAS and can be useful as an alternative to a full multibreed GWAS. Differences between the multibreed GWAS and the meta-analyses were larger when different breeds were combined than when the 2 Holstein populations were combined.


G3: Genes, Genomes, Genetics | 2016

Using Sequence Variants in Linkage Disequilibrium with Causative Mutations to Improve Across-Breed Prediction in Dairy Cattle: A Simulation Study

Irene van den Berg; Didier Boichard; Bernt Guldbrandtsen; Mogens Sandø Lund

Sequence data are expected to increase the reliability of genomic prediction by containing causative mutations directly, especially in cases where low linkage disequilibrium between markers and causative mutations limits prediction reliability, such as across-breed prediction in dairy cattle. In practice, the causative mutations are unknown, and prediction with only variants in perfect linkage disequilibrium with the causative mutations is not realistic, leading to a reduced reliability compared to knowing the causative variants. Our objective was to use sequence data to investigate the potential benefits of sequence data for the prediction of genomic relationships, and consequently reliability of genomic breeding values. We used sequence data from five dairy cattle breeds, and a larger number of imputed sequences for two of the five breeds. We focused on the influence of linkage disequilibrium between markers and causative mutations, and assumed that a fraction of the causative mutations was shared across breeds and had the same effect across breeds. By comparing the loss in reliability of different scenarios, varying the distance between markers and causative mutations, using either all genome wide markers from commercial SNP chips, or only the markers closest to the causative mutations, we demonstrate the importance of using only variants very close to the causative mutations, especially for across-breed prediction. Rare variants improved prediction only if they were very close to rare causative mutations, and all causative mutations were rare. Our results show that sequence data can potentially improve genomic prediction, but careful selection of markers is essential.


Nature Genetics | 2018

Meta-analysis of genome-wide association studies for cattle stature identifies common genes that regulate body size in mammals

Aniek C. Bouwman; Hans D. Daetwyler; Amanda J. Chamberlain; Carla Hurtado Ponce; Mehdi Sargolzaei; F.S. Schenkel; Goutam Sahana; Armelle Govignon-Gion; Simon Boitard; M. Dolezal; Hubert Pausch; Rasmus Froberg Brøndum; Phil J. Bowman; Bo Thomsen; Bernt Guldbrandtsen; Mogens Sandø Lund; Bertrand Servin; Dorian J. Garrick; James M. Reecy; Johanna Vilkki; A. Bagnato; Min Wang; Jesse L. Hoff; Robert D. Schnabel; Jeremy F. Taylor; Anna A. E. Vinkhuyzen; Frank Panitz; Christian Bendixen; Lars-Erik Holm; Birgit Gredler

Stature is affected by many polymorphisms of small effect in humans1. In contrast, variation in dogs, even within breeds, has been suggested to be largely due to variants in a small number of genes2,3. Here we use data from cattle to compare the genetic architecture of stature to those in humans and dogs. We conducted a meta-analysis for stature using 58,265 cattle from 17 populations with 25.4 million imputed whole-genome sequence variants. Results showed that the genetic architecture of stature in cattle is similar to that in humans, as the lead variants in 163 significantly associated genomic regions (P < 5 × 10−8) explained at most 13.8% of the phenotypic variance. Most of these variants were noncoding, including variants that were also expression quantitative trait loci (eQTLs) and in ChIP–seq peaks. There was significant overlap in loci for stature with humans and dogs, suggesting that a set of common genes regulates body size in mammals.Meta-analysis of data from 58,265 cattle shows that the genetic architecture underlying stature is similar to that in humans, where many genomic regions individually explain only a small amount of phenotypic variance.


Journal of Dairy Science | 2016

Whole-genome scan to detect quantitative trait loci associated with milk protein composition in 3 French dairy cattle breeds

M.P. Sanchez; Armelle Govignon-Gion; M. Ferrand; M. Gelé; D. Pourchet; Y. Amigues; S. Fritz; Mekki Boussaha; Aurélien Capitan; Dominique Rocha; G. Miranda; P. Martin; M. Brochard; Didier Boichard

In the context of the PhénoFinLait project, a genome-wide analysis was performed to detect quantitative trait loci (QTL) that affect milk protein composition estimated using mid-infrared spectrometry in the Montbéliarde (MO), Normande (NO), and Holstein (HO) French dairy cattle breeds. The 6 main milk proteins (α-lactalbumin, β-lactoglobulin, and αS1-, αS2-, β-, and κ-caseins) expressed as grams per 100g of milk (% of milk) or as grams per 100g of protein (% of protein) were estimated in 848,068 test-day milk samples from 156,660 cows. Genotyping was performed for 2,773 MO, 2,673 NO, and 2,208 HO cows using the Illumina BovineSNP50 BeadChip (Illumina Inc., San Diego, CA). Individual test-day records were adjusted for environmental effects and then averaged per cow to define the phenotypes analyzed. Quantitative trait loci detection was performed within each breed using a linkage disequilibrium and linkage analysis approach. A total of 39 genomic regions distributed on 20 of the 29 Bos taurus autosomes (BTA) were significantly associated with milk protein composition at a genome-wide level of significance in at least 1 of the 3 breeds. The 9 most significant QTL were located on BTA2 (133 Mbp), BTA6 (38, 47, and 87 Mbp), BTA11 (103 Mbp), BTA14 (1.8 Mbp), BTA20 (32 and 58 Mbp), and BTA29 (8 Mbp). The BTA6 (87 Mbp), BTA11, and BTA20 (58 Mbp) QTL were found in all 3 breeds, and they had highly significant effects on κ-casein, β-lactoglobulin, and α-lactalbumin, expressed as a percentage of protein, respectively. Each of these QTL explained between 13% (BTA14) and 51% (BTA11) of the genetic variance of the trait. Many other QTL regions were also identified in at least one breed. They were located on 14 additional chromosomes (1, 3, 4, 5, 7, 15, 17, 19, 21, 22, 24, 25, 26, and 27), and they explained 2 to 8% of the genetic variance of 1 or more protein composition traits. Concordance analyses, performed between QTL status and sequence-derived polymorphisms from 13 bulls, revealed previously known causal polymorphisms in LGB (BTA11) and GHR (BTA20 at 32 Mbp) and excluded some other previously described mutations. These results constitute a first step in identifying causal mutations and using routinely collected mid-infrared predictions in future genomic selection programs to improve bovine milk protein composition.


Genetics Selection Evolution | 2016

A reverse genetic approach identifies an ancestral frameshift mutation in RP1 causing recessive progressive retinal degeneration in European cattle breeds

Pauline Michot; Sabine Chahory; Andrew Marete; Cécile Grohs; Dimitri Dagios; Elise Donzel; Abdelhak Aboukadiri; Marie-Christine Deloche; Aurélie Allais-Bonnet; Matthieu Chambrial; Sarah Barbey; Lucie Genestout; Mekki Boussaha; Coralie Danchin-Burge; S. Fritz; Didier Boichard; Aurélien Capitan

BackgroundDomestication and artificial selection have resulted in strong genetic drift, relaxation of purifying selection and accumulation of deleterious mutations. As a consequence, bovine breeds experience regular outbreaks of recessive genetic defects which might represent only the tip of the iceberg since their detection depends on the observation of affected animals with distinctive symptoms. Thus, recessive mutations resulting in embryonic mortality or in non-specific symptoms are likely to be missed. The increasing availability of whole-genome sequences has opened new research avenues such as reverse genetics for their investigation. Our aim was to characterize the genetic load of 15 European breeds using data from the 1000 bull genomes consortium and prove that widespread harmful mutations remain to be detected.ResultsWe listed 2489 putative deleterious variants (in 1923 genes) segregating at a minimal frequency of 5xa0% in at least one of the breeds studied. Gene enrichment analysis showed major enrichment for genes related to nervous, visual and auditory systems, and moderate enrichment for genes related to cardiovascular and musculoskeletal systems. For verification purposes, we investigated the phenotypic consequences of a frameshift variant in the retinitis pigmentosa-1 gene segregating in several breeds and at a high frequency (27xa0%) in Normande cattle. As described in certain human patients, clinical and histological examination revealed that this mutation causes progressive degeneration of photoreceptors leading to complete blindness in homozygotes. We established that the deleterious allele was even more frequent in the Normande breed before 1975 (>40xa0%) and has been progressively counter-selected likely because of its associated negative effect on udder morphology. Finally, using identity-by-descent analysis we demonstrated that this mutation resulted from a unique ancestral event that dates back to ~2800 to 4000xa0years.ConclusionsWe provide a list of mutations that likely represent a substantial part of the genetic load of domestication in European cattle. We demonstrate that they accumulated non-randomly and that genes related to cognition and sensory functions are particularly affected. Finally, we describe an ancestral deleterious variant segregating in different breeds causing progressive retinal degeneration and irreversible blindness in adult animals.


Genetics Selection Evolution | 2016

Construction of a large collection of small genome variations in French dairy and beef breeds using whole-genome sequences.

Mekki Boussaha; Pauline Michot; Rabia Letaief; Chris Hoze; S. Fritz; Cécile Grohs; Diane Esquerré; Amandine Duchesne; Romain Philippe; Véronique Blanquet; Florence Phocas; Sandrine Floriot; Dominique Rocha; Christophe Klopp; Aurélien Capitan; Didier Boichard

BackgroundIn recent years, several bovine genome sequencing projects were carried out with the aim of developing genomic tools to improve dairy and beef production efficiency and sustainability.ResultsIn this study, we describe the first French cattle genome variation dataset obtained by sequencing 274 whole genomes representing several major dairy and beef breeds. This dataset contains over 28 million single nucleotide polymorphisms (SNPs) and small insertions and deletions. Comparisons between sequencing results and SNP array genotypes revealed a very high genotype concordance rate, which indicates the good quality of our data.ConclusionsTo our knowledge, this is the first large-scale catalog of small genomic variations in French dairy and beef cattle. This resource will contribute to the study of gene functions and population structure and also help to improve traits through genotype-guided selection.


Scientific Reports | 2017

Rapid Discovery of De Novo Deleterious Mutations in Cattle Enhances the Value of Livestock as Model Species

Emmanuelle Bourneuf; P. Otz; Hubert Pausch; V. Jagannathan; P. Michot; C. Grohs; G. Piton; S. Ammermüller; M.-C. Deloche; S. Fritz; H. Leclerc; Christine Péchoux; A. Boukadiri; Chris Hoze; R. Saintilan; Francoise Créchet; M. Mosca; Dierck Segelke; F. Guillaume; S. Bouet; A. Baur; A. Vasilescu; L. Genestout; A. Thomas; A. Allais-Bonnet; Dominique Rocha; M.-A. Colle; Christophe Klopp; D. Esquerré; Christine Wurmser

In humans, the clinical and molecular characterization of sporadic syndromes is often hindered by the small number of patients and the difficulty in developing animal models for severe dominant conditions. Here we show that the availability of large data sets of whole-genome sequences, high-density SNP chip genotypes and extensive recording of phenotype offers an unprecedented opportunity to quickly dissect the genetic architecture of severe dominant conditions in livestock. We report on the identification of seven dominant de novo mutations in CHD7, COL1A1, COL2A1, COPA, and MITF and exploit the structure of cattle populations to describe their clinical consequences and map modifier loci. Moreover, we demonstrate that the emergence of recessive genetic defects can be monitored by detecting de novo deleterious mutations in the genome of bulls used for artificial insemination. These results demonstrate the attractiveness of cattle as a model species in the post genomic era, particularly to confirm the genetic aetiology of isolated clinical case reports in humans.


Journal of Dairy Science | 2017

Short communication: Genetic parameters for milk protein composition predicted using mid-infrared spectroscopy in the French Montbéliarde, Normande, and Holstein dairy cattle breeds

M.P. Sanchez; M. Ferrand; M. Gelé; D. Pourchet; G. Miranda; P. Martin; M. Brochard; Didier Boichard

Genetic parameters for the major milk proteins were estimated in the 3 main French dairy cattle breeds (i.e. Montbéliarde, Normande, and Holstein) as part of the PhénoFinlait program. The 6 major milk protein contents as well as the total protein content (PC) were estimated from mid-infrared spectrometry on 133,592 test-day milk samples from 20,434 cows in first lactation. Lactation means, expressed as a percentage of milk (protein contents) or of protein (protein fractions), were analyzed with an animal mixed model including fixed environmental effects (herd, year × month of calving, and spectrometer) and a random genetic effect. Genetic parameter estimates were very consistent across breeds. Heritability estimates (h2) were generally higher for protein fractions than for protein contents. They were moderate to high for αS1-casein, αS2-casein, β-casein, κ-casein, and α-lactalbumin (0.25 < h2 < 0.72). In each breed, β-lactoglobulin was the most heritable trait (0.61 < h2 < 0.86). Genetic correlations (rg) varied depending on how the percentage was expressed. The PC was strongly positively correlated with protein contents but almost genetically independent from protein fractions. Protein fractions were generally in opposition, except between κ-casein and α-lactalbumin (0.39 < rg < 0.46) and κ-casein and αS2-casein (0.36 < rg < 0.49). Between protein contents, rg estimates were positive, with highest values found between caseins (0.83 < rg < 0.98). In the 3 breeds, β-lactoglobulin was negatively correlated with caseins (-0.75 < rg < -0.08), in particular with κ-casein (-0.75 < rg < -0.55). These results, obtained from a large panel of cows of the 3 main French dairy cattle breeds, show that routinely collected mid-infrared spectra could be used to modify milk protein composition by selection.

Collaboration


Dive into the Didier Boichard's collaboration.

Top Co-Authors

Avatar

S. Fritz

Université Paris-Saclay

View shared research outputs
Top Co-Authors

Avatar

Aurélien Capitan

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cécile Grohs

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Mekki Boussaha

Université Paris-Saclay

View shared research outputs
Top Co-Authors

Avatar

Helene Larroque

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Armelle Gion

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Guy Miranda

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Patrice Martin

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge