Aurélien Traversier
Claude Bernard University Lyon 1
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Aurélien Traversier.
Virology | 2012
Olivier Terrier; Vincent Moules; Coralie Carron; Gaëlle Cartet; Emilie Frobert; Matthieu Yver; Aurélien Traversier; Thorsten Wolff; Béatrice Riteau; Nadia Naffakh; Bruno Lina; Jean-Jacques Diaz; Manuel Rosa-Calatrava
Influenza A are nuclear replicating viruses which hijack host machineries in order to achieve optimal infection. Numerous functional virus-host interactions have now been characterized, but little information has been gathered concerning their link to the virally induced remodeling of the host cellular architecture. In this study, we infected cells with several human and avian influenza viruses and we have analyzed their ultrastructural modifications by using electron and confocal microscopy. We discovered that infections lead to a major and systematic disruption of nucleoli and the formation of a large number of diverse viral structures showing specificity that depended on the subtype origin and genomic composition of viruses. We identified NS1 and M1 proteins as the main actors in the remodeling of the host ultra-structure and our results suggest that each influenza A virus strain could be associated with a specific cellular fingerprint, possibly correlated to the functional properties of their viral components.
Scientific Reports | 2016
Olivier Terrier; Coralie Carron; Benoît de Chassey; Julia Dubois; Aurélien Traversier; Thomas Julien; Gaëlle Cartet; Anaïs Proust; Sabine Hacot; Denis Ressnikoff; Vincent Lotteau; Bruno Lina; Jean-Jacques Diaz; Vincent Moules; Manuel Rosa-Calatrava
Influenza viruses replicate their single-stranded RNA genomes in the nucleus of infected cells and these replicated genomes (vRNPs) are then exported from the nucleus to the cytoplasm and plasma membrane before budding. To achieve this export, influenza viruses hijack the host cell export machinery. However, the complete mechanisms underlying this hijacking remain not fully understood. We have previously shown that influenza viruses induce a marked alteration of the nucleus during the time-course of infection and notably in the nucleolar compartment. In this study, we discovered that a major nucleolar component, called nucleolin, is required for an efficient export of vRNPs and viral replication. We have notably shown that nucleolin interacts with the viral nucleoprotein (NP) that mainly constitutes vRNPs. Our results suggest that this interaction could allow vRNPs to “catch” the host cell export machinery, a necessary step for viral replication.
Journal of Molecular Biology | 2017
Baptiste Panthu; Olivier Terrier; Coralie Carron; Aurélien Traversier; Antoine Corbin; Laurent Balvay; Bruno Lina; Manuel Rosa-Calatrava; Théophile Ohlmann
The non-structural protein NS1 of influenza A viruses exerts pleiotropic functions during infection. Among these functions, NS1 was shown to be involved in the control of both viral and cellular translation; however, the mechanism by which this occurs remains to be determined. Thus, we have revisited the role of NS1 in translation by using a combination of influenza infection, mRNA reporter transfection, and in vitro functional and biochemical assays. Our data show that the NS1 protein is able to enhance the translation of virtually all tested mRNAs with the exception of constructs bearing the Dicistroviruses Internal ribosome entry segment (IRESes) (DCV and CrPV), suggesting a role at the level of translation initiation. The domain of NS1 required for translation stimulation was mapped to the RNA binding amino-terminal motif of the protein with residues R38 and K41 being critical for activity. Although we show that NS1 can bind directly to mRNAs, it does not correlate with its ability to stimulate translation. This activity rather relies on the property of NS1 to associate with ribosomes and to recruit them to target mRNAs.
Virology | 2014
Olivier Terrier; Coralie Carron; Gaëlle Cartet; Aurélien Traversier; Thomas Julien; Martine Valette; Bruno Lina; Vincent Moules; Manuel Rosa-Calatrava
In this study, we investigated the ultrastructural modifications induced by influenza A (H7N9) virus in human lung epithelial cells. One particular characteristic of H7N9 viral infection is the formation of numerous M1-associated striated tubular structures within the nucleus and the cytoplasm, which have only previously been observed for a limited number of influenza A viruses, notably the 2009 pandemic (H1N1) virus.
Protein Expression and Purification | 2017
Elodie Desuzinges Mandon; Aurélien Traversier; Anne Champagne; Lorraine Benier; Stéphane Audebert; Sébastien Balme; Emmanuel Dejean; Manuel Rosa Calatrava; Anass Jawhari
Influenza A virus displays one of the highest infection rates of all human viruses and therefore represents a severe human health threat associated with an important economical challenge. Influenza matrix protein 2 (M2) is a membrane protein of the viral envelope that forms a proton selective ion channel. Here we report the expression and native isolation of full length active M2 without mutations or fusions. The ability of the influenza virus to efficiently infect MDCK cells was used to express native M2 protein. Using a Calixarene detergents/surfactants based approach; we were able to solubilize most of M2 from the plasma membrane and purify it. The tetrameric form of native M2 was maintained during the protein preparation. Mass spectrometry shows that M2 was phosphorylated in its cytoplasmic tail (serine 64) and newly identifies an acetylation of the highly conserved Lysine 60. ELISA shows that solubilized and purified M2 was specifically recognized by M2 antibody MAB65 and was able to displace the antibody from M2 MDCK membranes. Using a bilayer voltage clamp measurement assay, we demonstrate a pH dependent proton selective ion channel activity. The addition of the M2 ion channel blocker amantadine allows a total inhibition of the channel activity, illustrating therefore the specificity of purified M2 activity. Taken together, this work shows the production and isolation of a tetrameric and functional native M2 ion channel that will pave the way to structural and functional characterization of native M2, conformational antibody development, small molecules compounds screening towards vaccine treatment.
Scientific Reports | 2018
Andrés Pizzorno; Julia Dubois; Daniela Machado; Gaëlle Cartet; Aurélien Traversier; Thomas Julien; Bruno Lina; Jean-Christophe Bourdon; Manuel Rosa-Calatrava; Olivier Terrier
The interplay between influenza A viruses (IAV) and the p53 pathway has been reported in several studies, highlighting the antiviral contribution of p53. Here, we investigated the impact of IAV on the E3-ubiquitin ligase Mdm2, a major regulator of p53, and observed that IAV targets Mdm2, notably via its non-structural protein (NS1), therefore altering Mdm2 stability, p53/Mdm2 interaction and regulatory loop during the time-course of infection. This study also highlights a new antiviral facet of Mdm2 possibly increasing the list of its many p53-independent functions. Altogether, our work contributes to better understand the mechanisms underlining the complex interactions between IAV and the p53 pathway, for which both NS1 and Mdm2 arise as key players.
bioRxiv | 2018
Mario Pizzorno; Olivier Terrier; Claire Nicolas de Lamballerie; Thomas Julien; Blandine Padey; Aurélien Traversier; Magali Roche; Marie-Ève Hamelin; Chantal Rhéaume; Séverine Croze; Vanessa Escuret; Julien Poissy; Bruno Lina; Catherine Legras-Lachuer; Julien Textoris; Guy Boivin; Manuel Rosa-Calatrava
Background: Influenza virus infections remain a major and recurrent public health burden. The intrinsic ever-evolving nature of this virus, the suboptimal efficacy of current influenza inactivated vaccines, as well as the emergence of resistance against a limited antiviral arsenal, highlight the critical need for novel therapeutic approaches. In this context, the aim of this study was to develop and validate an innovative strategy for drug repurposing as host-targeted inhibitors of influenza viruses and the rapid evaluation of the most promising candidates in Phase II clinical trials. Methods: We exploited in vivo global transcriptomic signatures of infection directly obtained from a patient cohort to determine a shortlist of already marketed drugs with newly identified, host-targeted inhibitory properties against influenza virus. The antiviral potential of selected repurposing candidates was further evaluated in vitro, in vivo and ex vivo. Results: Our strategy allowed the selection of a shortlist of 35 high potential candidates out of a rationalized computational screening of 1,309 FDA-approved bioactive molecules, 31 of which were validated for their significant in vitro antiviral activity. Our in vivo and ex vivo results highlight diltiazem, a calcium channel blocker currently used in the treatment of hypertension, as a promising option for the treatment of influenza infections. Additionally, transcriptomic signature analysis further revealed the so far undescribed capacity of diltiazem to modulate the expression of specific genes related to the host antiviral response and cholesterol metabolism. Finally, combination treatment with diltiazem and virus-targeted oseltamivir neuraminidase inhibitor further increased antiviral efficacy, prompting rapid authorization for the initiation of a Phase II clinical trial. Conclusions: This original, host-targeted, drug repurposing strategy constitutes an effective and highly reactive process for the rapid identification of novel anti-infectious drugs, with potential major implications for the management of antimicrobial resistance and the rapid response to future epidemic or pandemic (re)emerging diseases for which we are still disarmed.
Journal of General Virology | 2018
Daniela Machado; Andrés Pizzorno; Jonathan Hoffmann; Aurélien Traversier; Hubert Endtz; Bruno Lina; Manuel Rosa-Calatrava; Glaucia Paranhos-Baccala; Olivier Terrier
The interplay between respiratory syncytial virus (RSV) and the p53 pathway has only been reported in a limited number of studies, yet the underlying abrogation mechanisms of p53 activity during the time course of infection, possibly involving viral proteins, remained unclear. Here, we demonstrate that RSV infection impairs global p53 transcriptional activity, notably via its proteasome-dependent degradation at late stages of infection. We also demonstrate that NS1 and NS2 contribute to the abrogation of p53 activity, and used different experimental strategies (e.g. siRNA, small molecules) to underline the antiviral contribution of p53 in the context of RSV infection. Notably, our study highlights a strong RSV-induced disequilibrium of the p53/NF-κB functional balance, which appears to contribute to the up-regulation of the expression of several proinflammatory cytokines and chemokines.
Archive | 2017
Manuel Rosa-Calatrava; Aurélien Traversier; Élodie Desuzinges-mandon; Emmanuel Dejean
Archive | 2016
Emma Petiot; Anaïs Proust; Aurélien Traversier; Manuel Rosa-Calatrava; Jean-Marc Balloul