Auva Davoodi
University of California, Davis
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Auva Davoodi.
Journal of Investigative Dermatology | 2016
Tasuku Akiyama; Margaret Ivanov; Masaki Nagamine; Auva Davoodi; Mirela Iodi Carstens; Akihiko Ikoma; Ferda Cevikbas; Cordula Kempkes; Joerg Buddenkotte; Martin Steinhoff; E. Carstens
Several thermo-sensitive TRP channels (TRPV1, -3; TRPA1) have been implicated in itch. In contrast, the role of transient receptor potential vanilloid type-4 (TRPV4) in itch is unknown. Therefore, we investigated if TRPV4, a temperature-sensitive cation channel, plays an important role in acute itch in mice. Four different pruritogens including serotonin (5-hydroxytrytamine, 5-HT), histamine, SLIGRL (PAR2/MrgprC11 agonist) and chloroquine (MrgprA3 agonist) were intradermally injected and itch-related scratching behavior was assessed. TRPV4 knockout (TRPV4KO) mice exhibited significantly fewer 5-HT-evoked scratching bouts compared to wild-type (WT) mice. Notably, no differences between TRPV4KO and WT mice were observed in the number of scratch bouts elicited by SLIGRL and histamine. Pretreatment with a TRPV4 antagonist significantly attenuated 5-HT-evoked scratching in vivo. Using calcium imaging in cultured primary murine dorsal root ganglion (DRG) neurons, the response of neurons after 5-HT application, but not other pruritogens, was significantly lower in TRPV4KO compared to WT mice. A TRPV4 antagonist significantly suppressed 5-HT-evoked responses in DRG cells from WT mice. Approximately 90% of 5-HT-sensitive DRG neurons were immunoreactive for an antibody to TRPV4, as assessed by calcium imaging. These results indicate that serotonin-induced itch is linked to TRPV4.
Journal of Neurophysiology | 2013
Tasuku Akiyama; Mitsutoshi Tominaga; Auva Davoodi; Masaki Nagamine; Kevin Blansit; Alexander Horwitz; Mirela Iodi Carstens; E. Carstens
Recent studies support roles for neurokinin-1 (NK-1) and gastrin-releasing peptide (GRP) receptor-expressing spinal neurons in itch. We presently investigated expression of substance P (SP) and GRP in pruritogen-responsive primary sensory neurons and roles for these neuropeptides in itch signaling. Responses of dorsal root ganglion (DRG) cells to various pruritogens were observed by calcium imaging. DRG cells were then processed for SP, GRP, and isolectin B-4 (IB4; a marker for nonpeptidergic neurons) immunofluorescence. Of pruritogen-responsive DRG cells, 11.8-26.8%, 21.8-40.0%, and 21.4-26.8% were immunopositive for SP, GRP, and IB4, respectively. In behavioral studies, both systemic and intrathecal administration of a NK-1 receptor antagonist significantly attenuated scratching evoked by chloroquine and a protease-activated receptor 2 agonist, SLIGRL, but not histamine, bovine adrenal medulla peptide 8-22 (BAM8-22), or serotonin. Systemic or intrathecal administration of a GRP receptor antagonist attenuated scratching evoked by chloroquine and SLIGRL but not BAM8-22 or histamine. The GRP receptor antagonist enhanced scratching evoked by serotonin. These results indicate that SP and GRP expressed in primary sensory neurons are partially involved as neurotransmitters in histamine-independent itch signaling from the skin to the spinal cord.
Neuroscience | 2012
Tasuku Akiyama; Mitsutoshi Tominaga; Auva Davoodi; Masaki Nagamine; Kevin Blansit; Alexander Horwitz; Mirela Iodi Carstens; E. Carstens
Overexpression of pruritogens and their precursors may contribute to the sensitization of histamine-dependent and -independent itch-signaling pathways in chronic itch. We presently investigated self- and cross-sensitization of scratching behavior elicited by various pruritogens, and their effects on primary sensory neurons. The MrgprC11 agonist BAM8-22 exhibited self- and reciprocal cross-sensitization of scratching evoked by the protease-activated receptor-2 (PAR-2) agonist SLIGRL. The MrgprA3 agonist chloroquine unidirectionally cross-sensitized BAM8-22-evoked scratching. Histamine unidirectionally cross-sensitized scratching evoked by chloroquine and BAM8-22. SLIGRL unidirectionally cross-sensitized scratching evoked by chloroquine. Dorsal root ganglion (DRG) cells responded to various combinations of pruritogens and algogens. Neither chloroquine, BAM8-22 nor histamine had any effect on responses of DRG cell responses to subsequently applied pruritogens, implying that their behavioral self- and cross-sensitization effects are mediated indirectly. SLIGRL unilaterally cross-sensitized responses of DRG cells to chloroquine and BAM8-22, consistent with the behavioral data. These results indicate that unidirectional cross-sensitization of histamine-independent itch-signaling pathways might occur at a peripheral site through PAR-2. PAR-2 expressed in pruriceptive nerve endings is a potential target to reduce sensitization associated with chronic itch.
Neuroscience | 2014
Amanda H. Klein; Christopher L. Joe; Auva Davoodi; Kenichi Takechi; Mirela Iodi Carstens; E. Carstens
Eugenol and carvacrol from clove and oregano, respectively, are agonists of the warmth-sensitive transient receptor potential channel TRPV3 and the irritant-sensitive transient receptor potential ankyrin (TRPA)-1. Eugenol and carvacrol induce oral irritation that rapidly desensitizes, accompanied by brief enhancement of innocuous warmth and heat pain in humans. We presently investigated if eugenol and carvacrol activate nociceptive primary afferent and higher order trigeminal neurons and enhance their heat-evoked responses, using calcium imaging of cultured trigeminal ganglion (TG) and dorsal root ganglion (DRG) neurons, and in vivo single-unit recordings in trigeminal subnucleus caudalis (Vc) of rats. Eugenol and carvacrol activated 20-30% of TG and 7-20% of DRG cells, the majority of which additionally responded to menthol, mustard oil and/or capsaicin. TG cell responses to innocuous (39°) and noxious (42 °C) heating were enhanced by eugenol and carvacrol. We identified dorsomedial Vc neurons responsive to noxious heating of the tongue in pentobarbital-anesthetized rats. Eugenol and carvacrol dose-dependently elicited desensitizing responses in 55% and 73% of heat-sensitive units, respectively. Responses to noxious heat were briefly enhanced by eugenol and carvacrol. Many eugenol- and carvacrol-responsive units also responded to menthol, cinnamaldehyde and capsaicin. These data support a peripheral site for eugenol and carvacrol to enhance warmth- and noxious heat-evoked responses of trigeminal neurons, and are consistent with the observation that these agonists briefly enhance warmth and heat pain on the human tongue.
Pain | 2012
Jessica Marie Spradley; Auva Davoodi; Mirela Iodi Carstens; E. Carstens
Summary Certain intense acute stressors, such as cold‐water swim, suppress facial itch‐ and pain‐related behavioral responses simultaneously in rats. This indicates that the endogenous antinociceptive system activated by acute stressors can also exert an antipruritic effect. Abstract Many acute stressors reduce pain, a phenomenon called stress‐induced antinociception (SIA). Stress also is associated with increased scratching in chronic itch conditions. We investigated effects of acute stressors on facial itch and pain using a recently introduced rat model. Under baseline (no‐swim) conditions, intradermal (id) cheek microinjection of the pruritogen serotonin (5‐HT) selectively elicited hindlimb scratch bouts, whereas the algogen mustard oil (allyl isothiocyanate [AITC]) selectively elicited ipsilateral forepaw swipes, directed to the cheek injection site. To test effects of swim stress, rats received id cheek microinjection of 5‐HT (1%), AITC (10%), or vehicle, and were then subjected to one of the following swim conditions: (1) weak SIA (W‐SIA), (2) naltrexone‐sensitive SIA (intermediate or I‐SIA), or (3) naltrexone‐insensitive SIA (strong or S‐SIA). After the swim, we recorded the number of hindlimb scratch bouts and forelimb swipes directed to the cheek injection site, as well as facial grooming by both forepaws. Under S‐SIA, AITC‐evoked swiping and 5‐HT–evoked scratching were both reduced. I‐SIA reduced AITC‐evoked swiping with no effect on 5‐HT–evoked scratching. Facial grooming immediately post‐swim was suppressed by S‐SIA, but not I‐ or W‐SIA. W‐SIA tended to equalize scratching and swiping elicited by 5‐HT and AITC compared with no‐swim controls, suggesting altered itch and pain processing. Exercise (wheel‐running), novelty, cold exposure, and fear (shaker table), key components of swim stress, differentially affected tail‐flick latencies and 5‐HT–evoked swiping and scratching behavior. Thus, itch and pain can be simultaneously suppressed by a combination of acute stress‐related factors via an opioid‐independent mechanism.
Neuroscience | 2012
Amanda H. Klein; Carolyn M. Sawyer; Kenichi Takechi; Auva Davoodi; Margaret Ivanov; Mirela Iodi Carstens; E. Carstens
Menthol is used in pharmaceutical applications because of its desired cooling and analgesic properties. The neural mechanism by which topical application of menthol decreases heat pain is not fully understood. We investigated the effects of topical menthol application on lumbar dorsal horn wide dynamic range and nociceptive-specific neuronal responses to noxious heat and cooling of glabrous hindpaw cutaneous receptive fields. Menthol increased thresholds for responses to noxious heat in a concentration-dependent manner. Menthol had a biphasic effect on cold-evoked responses, reducing the threshold (to warmer temperatures) at a low (1%) concentration and increasing threshold and reducing response magnitude at high (10%, 40%) concentrations. Menthol had little effect on responses to innocuous or noxious mechanical stimuli, ruling out a local anesthetic action. Application of 40% menthol to the contralateral hindpaw tended to reduce responses to cooling and noxious heat, suggesting a weak heterosegmental inhibitory effect. These results indicate that menthol has an analgesic effect on heat sensitivity of nociceptive dorsal horn neurons, as well as biphasic effects on cold sensitivity, consistent with previous behavioral observations.
Neuropharmacology | 2012
Jessica Marie Spradley; Auva Davoodi; Leland B. Gee; Mirela Iodi Carstens; E. Carstens
Cannabinoids suppress nocifensive behaviors in rodents. We presently investigated peripheral endocannabinoid modulation of itch- and pain-related behaviors elicited from facial vs. spinally-innervated skin of rats. Intradermal (id) injection of the pruritogen serotonin (5-HT) elicited significantly more hindlimb scratch bouts, and longer cumulative time scratching, when injected in the rostral back compared to the cheek. Pretreatment of skin with inhibitors of degrading enzymes for the endocannabinoids anandamide (URB597) or 2-arachidonoylglycerol (JZL184) significantly reduced scratching elicited by 5-HT in the rostral back. These effects were prevented by co-treatment with antagonists of the CB₁ (AM251) or CB₂ receptor (AM630), implicating both receptor subtypes in endocannabinoid suppression of scratching in spinally-innervated skin. Conversely, pretreatment with either enzyme inhibitor, or with AM630 alone, increased the number of scratch bouts elicited by id 5-HT injection in the cheek. Moreover, pretreatment with JZL184 also significantly increased pain-related forelimb wipes directed to the cheek following id injection of the algogen, allyl isothiocyanate (AITC; mustard oil). Thus, peripheral endocannabinoids have opposite effects on itch-related scratching behaviors in trigeminally- vs. spinally-innervated skin. These results suggest that increasing peripheral endocannabinoid levels represents a promising therapeutic approach to treat itch arising from the lower body, but caution that such treatment may not relieve, and may even exacerbate, itch and pain arising from trigeminally-innervated skin of the face or scalp.
Journal of Neurophysiology | 2015
Tasuku Akiyama; Masaki Nagamine; Auva Davoodi; M. Iodi Carstens; Ferda Cevikbas; Martin Steinhoff; E. Carstens
Endothelin-1 (ET-1) has been implicated in nonhistaminergic itch. Here we used electrophysiological methods to investigate whether mouse superficial dorsal horn neurons respond to intradermal (id) injection of ET-1 and whether ET-1-sensitive neurons additionally respond to other pruritic and algesic stimuli or spinal superfusion of bombesin, a homolog of gastrin-releasing peptide (GRP) that excites spinal itch-signaling neurons. Single-unit recordings were made from lumbar dorsal horn neurons in pentobarbital-anesthetized C57BL/6 mice. We searched for units that exhibited elevated firing after id injection of ET-1 (1 μg/μl). Responsive units were further tested with mechanical stimuli, bombesin (spinal superfusion, 200 μg·ml(-1)·min(-1)), heating, cooling, and additional chemicals [histamine, chloroquine, allyl isothiocyanate (AITC), capsaicin]. Of 40 ET-1-responsive units, 48% responded to brush and pinch [wide dynamic range (WDR)] and 52% to pinch only [high threshold (HT)]. Ninety-three percent responded to noxious heat, 50% to cooling, and >70% to histamine, chloroquine, AITC, and capsaicin. Fifty-seven percent responded to bombesin, suggesting that they participate in spinal itch transmission. That most ET-1-sensitive spinal neurons also responded to pruritic and algesic stimuli is consistent with previous studies of pruritogen-responsive dorsal horn neurons. We previously hypothesized that pruritogen-sensitive neurons signal itch. The observation that ET-1 activates nociceptive neurons suggests that both itch and pain signals may be generated by ET-1 to result in simultaneous sensations of itch and pain, consistent with observations that ET-1 elicits both itch- and pain-related behaviors in animals and burning itch sensations in humans.
Journal of Neurophysiology | 2017
Tasuku Akiyama; Masaki Nagamine; Auva Davoodi; Margaret Ivanov; M. Iodi Carstens; E. Carstens
Itch is often triggered by warming the skin in patients with itchy dermatitis, but the underlying mechanism is largely unknown. We presently investigated if warming the skin enhances histamine- or serotonin (5-HT)-evoked itch behavior or responses of sensory dorsal root ganglion (DRG) cells, and if responses of superficial dorsal horn neurons to innocuous warming are enhanced by these pruritogens. In a temperature-controlled environmental chamber, mice exhibited greater scratching following intradermal injection of 5-HT, but not histamine, SLIGRL, or BAM8-22, when the skin surface temperature was above 36°C. Calcium imaging of DRG cells in a temperature-controlled bath revealed that responses to 5-HT, but not histamine, were significantly greater at a bath temperature of 35°C vs. lower temperatures. Single-unit recordings revealed a subpopulation of superficial dorsal horn neurons responsive to intradermal injection of 5-HT. Of these, 58% responded to innocuous skin warming (37°C) prior to intradermal injection of 5-HT, while 100% responded to warming following intradermal injection of 5-HT. Warming-evoked responses were superimposed on the 5-HT-evoked elevation in firing and were significantly larger compared with responses pre-5-HT, as long as 30 min after the intradermal injection of 5-HT. Five-HT-insensitive units, and units that either did or did not respond to intradermal histamine, did not exhibit any increase in the incidence of warmth sensitivity or in the mean response to warming following intradermal injection of the pruritogen. The results suggest that 5-HT-evoked responses of pruriceptors are enhanced during skin warming, leading to increased firing of 5-HT-sensitive dorsal horn neurons that signal nonhistaminergic itch. NEW & NOTEWORTHY Skin warming often exacerbates itch in patients with itchy dermatitis. We demonstrate that warming the skin enhanced serotonin-evoked, but not histamine-evoked, itch behavior and responses of sensory dorsal root ganglion cells. Moreover, serotonin, but not histamine, enhanced responses of superficial dorsal horn neurons to innocuous warming. The results suggest that skin warming selectively enhances the responses of serotonin-sensitive pruriceptors, leading to increased firing of serotonin-sensitive dorsal horn neurons that signal nonhistaminergic itch.
Journal of Neurophysiology | 2018
T. Follansbee; T. Akiyama; M. Fujii; Auva Davoodi; Masaki Nagamine; M. Iodi Carstens; E. Carstens
Rostroventromedial medulla (RVM) ON and OFF cells are thought to facilitate and inhibit spinal nociceptive transmission, respectively. However, it is unknown how ON and OFF cells respond to pruritic stimuli or how they contribute to descending modulation of spinal itch signaling. In pentobarbital sodium-anesthetized mice, single-unit recordings were made in RVM from ON and OFF cells identified by their respective increase or decrease in firing that occurred just before nocifensive hindlimb withdrawal elicited by paw pinch. Of RVM ON cells, 75% (21/28) were excited by intradermal histamine, 50% (10/20) by intradermal chloroquine, and 75% (27/36) by intradermal capsaicin. Most chemically responsive units also responded to a scratch stimulus applied to the injected hindpaw. Few ON cells responded to intradermal injection of vehicle (saline: 5/32; Tween 2/17) but still responded to scratching. For OFF cells, intradermal histamine and scratching inhibited 32% (6/19) with no effect of histamine in the remainder. Intradermal chloroquine inhibited 44% (4/9) and intradermal capsaicin inhibited 61% (11/18) of OFF cells. Few OFF cells were affected by vehicles (Tween: 1 inhibited, 7 unaffected; saline: 3 excited, 1 inhibited, 8 unaffected). Both ON and OFF cells that responded to one chemical usually also responded to others, whereas units unresponsive to the first-tested chemical tended not to respond to others. These results indicate that ascending pruriceptive signals activate RVM ON cells and inhibit RVM OFF cells. These effects are considered to facilitate and disinhibit spinal pain transmission, respectively. It is currently not clear if spinal itch transmission is similarly modulated. NEW & NOTEWORTHY The rostroventromedial medulla (RVM) contains ON and OFF cells that are, respectively, excited and inhibited by noxious stimuli and have descending projections that facilitate and inhibit spinal nociceptive transmission. Most RVM ON cells were excited, and OFF cells inhibited, by intradermal injection of the pruritogens histamine and chloroquine, as well as the algogen capsaicin. These results indicate that itchy stimuli activate RVM neurons that presumably give rise to descending modulation of spinal itch transmission.Rostroventromedial medulla (RVM) ON and OFF cells are thought to facilitate and inhibit spinal nociceptive transmission, respectively. However, it is unknown how ON and OFF cells respond to pruritic stimuli or how they contribute to descending modulation of spinal itch signaling. In pentobarbital sodium-anesthetized mice, single-unit recordings were made in RVM from ON and OFF cells identified by their respective increase or decrease in firing that occurred just before nocifensive hindlimb withdrawal elicited by paw pinch. Of RVM ON cells, 75% (21/28) were excited by intradermal histamine, 50% (10/20) by intradermal chloroquine, and 75% (27/36) by intradermal capsaicin. Most chemically responsive units also responded to a scratch stimulus applied to the injected hindpaw. Few ON cells responded to intradermal injection of vehicle (saline: 5/32; Tween 2/17) but still responded to scratching. For OFF cells, intradermal histamine and scratching inhibited 32% (6/19) with no effect of histamine in the remainder. Intradermal chloroquine inhibited 44% (4/9) and intradermal capsaicin inhibited 61% (11/18) of OFF cells. Few OFF cells were affected by vehicles (Tween: 1 inhibited, 7 unaffected; saline: 3 excited, 1 inhibited, 8 unaffected). Both ON and OFF cells that responded to one chemical usually also responded to others, whereas units unresponsive to the first-tested chemical tended not to respond to others. These results indicate that ascending pruriceptive signals activate RVM ON cells and inhibit RVM OFF cells. These effects are considered to facilitate and disinhibit spinal pain transmission, respectively. It is currently not clear if spinal itch transmission is similarly modulated. NEW & NOTEWORTHY The rostroventromedial medulla (RVM) contains ON and OFF cells that are, respectively, excited and inhibited by noxious stimuli and have descending projections that facilitate and inhibit spinal nociceptive transmission. Most RVM ON cells were excited, and OFF cells inhibited, by intradermal injection of the pruritogens histamine and chloroquine, as well as the algogen capsaicin. These results indicate that itchy stimuli activate RVM neurons that presumably give rise to descending modulation of spinal itch transmission.