Mirela Iodi Carstens
University of California, Davis
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mirela Iodi Carstens.
Neuroreport | 2010
E. Carstens; Mirela Iodi Carstens; Christopher T. Simons; Steven L. Jinks
Itch is thought to be signaled by pruritogen-responsive neurons in the superficial spinal dorsal horn. Many neurons here express the substance P NK-1 receptor. We investigated whether neurotoxic destruction of spinal NK-1-expressing neurons affected itch-related scratching behavior. Rats received intracisternal substance P conjugated to saporin (SP-SAP), or saporin (SAP) only (controls), and were subsequently tested for scratching behavior elicited by intradermal 5-hydroxytryptamine. SAP controls exhibited dose-related hindlimb scratching, which was significantly attenuated in SP-SAP-treated rats. There was a virtual absence of NK-1 immunoreactive neurons in superficial laminae of the upper cervical and medullary dorsal horn in SP-SAP-treated rats. These results indicate that superficial dorsal horn neurons expressing NK-1 receptors play a key role in spinal itch transmission.
The Journal of Neuroscience | 2009
Tasuku Akiyama; Austin W. Merrill; Mirela Iodi Carstens; E. Carstens
Itch, an unpleasant sensation associated with the desire to scratch, is symptomatic of dermatologic and systemic disorders that often resist antihistamine treatment. Histamine-independent itch mediators include serotonin (5-HT) and agonists of the protease-activated receptor-2 (PAR-2). We used behavior, Fos immunohistochemistry, and electrophysiology to investigate if these mediators activate spinal dorsal horn neurons in a manner consistent with itch. Intradermal (id) injection of the PAR-2 agonist SLIGRL-NH2 in the rostral back evoked bouts of directed hindlimb scratches over 20–30 min. Hindpaw injection of SLIGRL-NH2 produced Fos staining in superficial dorsal horn which was then targeted for single-unit recording. Small id microinjections of SLIGRL-NH2 or 5-HT identified responsive single units in the superficial dorsal horn of mice anesthetized with pentobarbital. Thirty-eight units characterized as wide dynamic range, nociceptive specific, or mechanically insensitive exhibited significantly increased firing after id SLIGRL-NH2 for 9 min, to partial (25%) tachyphylaxis with repeated injection. A majority additionally responded to 5-HT (70%), mustard oil (79%), and capsaicin (71%). Seven units isolated with the 5-HT search stimulus exhibited significant and prolonged responses to 5-HT with tachyphylaxis to repeated injections. The majority also responded to SLIGRL-NH2, mustard oil, and capsaicin. The prolonged responses of superficial dorsal horn neurons to SLIGRL-NH2 and 5-HT suggest a role in signaling itch. However, their responsiveness to algogens is inconsistent with itch specificity. Alternatively, such neurons may signal itch, whereas noxious stimulus levels recruit these and a larger population of pruritogen-insensitive cells to signal pain which masks or occludes the itch signal.
Journal of Pharmacology and Experimental Therapeutics | 2009
Tasuku Akiyama; Austin W. Merrill; Karen L. Zanotto; Mirela Iodi Carstens; E. Carstens
Protease-activated receptor (PAR)-2 and PAR-4 are implicated in nonhistaminergic itch. We investigated dose dependence, tachyphylaxis, and cross-tachyphylaxis of itch-associated scratching elicited by intradermal injections of PAR-2 and PAR-4 agonists, serotonin (5-hydroxytryptamine, 5-HT), and histamine in ICR mice, as well as μ-opioid modulation of PAR-2 agonist-evoked scratching. Each agent elicited dose-related increases in scratch bouts. Scratching elicited by the PAR-4 agonist and histamine both exhibited significant tachyphylaxis but no cross-tachyphylaxis with each other. Scratching evoked by 5-HT did not exhibit significant tachyphylaxis but did exhibit significant cross-tachyphylaxis to scratching evoked by the PAR-2 and PAR-4 agonists and histamine. Naltrexone and high-dose morphine (10 mg/kg) attenuated PAR-2 agonist-evoked scratching, whereas lower dose morphine (1 mg/kg) had no effect. High-dose morphine also significantly increased circling behavior, which may have interfered with scratching. The PAR-2 agonist and 5-HT produced overlapping distributions of Fos-like immunoreactivity in the superficial dorsal horn. These results indicate that PAR-2 and PAR-4 agonists, histamine, and 5-HT elicit itch-related scratching and activate superficial dorsal horn neurons that may participate in scratch reflex and ascending itch signaling pathways.
PLOS ONE | 2011
Tasuku Akiyama; Mirela Iodi Carstens; E. Carstens
Scratching relieves itch, but the underlying neural mechanisms are poorly understood. We presently investigated a role for the inhibitory neurotransmitters GABA and glycine in scratch-evoked inhibition of spinal itch-signaling neurons in a mouse model of chronic dry skin itch. Superficial dorsal horn neurons ipsilateral to hindpaw dry skin treatment exhibited a high level of spontaneous firing that was significantly attenuated by cutaneous scratching, pinch and noxious heat. Scratch-evoked inhibition was nearly abolished by spinal delivery of the glycine antagonist, strychnine, and was markedly attenuated by respective GABAA and GABAB antagonists bicuculline and saclofen. Scratch-evoked inhibition was also significantly attenuated (but not abolished) by interruption of the upper cervical spinal cord, indicating the involvement of both segmental and suprasegmental circuits that engage glycine- and GABA-mediated inhibition of spinal itch-signaling neurons by noxious counterstimuli.
Behavioural Brain Research | 2010
Amanda H. Klein; Carolyn M. Sawyer; Mirela Iodi Carstens; Merab G. Tsagareli; Nana Tsiklauri; E. Carstens
Menthol is used in analgesic balms and also in foods and oral hygiene products for its fresh cooling sensation. Menthol enhances cooling by interacting with the cold-sensitive thermoTRP channel TRPM8, but its effect on pain is less well understood. We presently used behavioral methods to investigate effects of topical menthol on thermal (hot and cold) pain and innocuous cold and mechanical sensitivity in rats. Menthol dose-dependently increased the latency for noxious heat-evoked withdrawal of the treated hindpaw with a weak mirror-image effect, indicating antinociception. Menthol at the highest concentration (40%) reduced mechanical withdrawal thresholds, with no effect at lower concentrations. Menthol had a biphasic effect on cold avoidance. At high concentrations (10% and 40%) menthol reduced avoidance of colder temperatures (15 degrees C and 20 degrees C) compared to 30 degrees C, while at lower concentrations (0.01-1%) menthol enhanced cold avoidance. In a -5 degrees C cold plate test, 40% menthol significantly increased the nocifensive response latency (cold hypoalgesia) while lower concentrations were not different from vehicle controls. These results are generally consistent with neurophysiological and human psychophysical data and support TRPM8 as a potential peripheral target of pain modulation.
Food Quality and Preference | 2002
E. Carstens; Mirela Iodi Carstens; Jean Marc Dessirier; Michael O'Mahony; Christopher T. Simons; Makoto Sudo; Satoko Sudo
Abstract This paper reviews neurophysiological and psychological studies of oral irritation elicited by chemicals in spicy foods and carbonated drinks. Oral irritant, thermal and textural sensations are conveyed to the brain by the trigeminal pathway, which is separate from the gustatory and olfactory systems. In humans, repetitive application of capsaicin, citric acid, or concentrated NaCl elicits oral irritation that grows in intensity across trials (“sensitization”). After a rest period, reapplication elicits less irritation (“self-desensitization”), but if given recurrently will eventually evoke a progressive rise in irritation (“stimulus-induced recovery”=SIR). In neurophysiological recordings from neurons in the trigeminal subnucleus caudalis (Vc), the first relay in the pathway for oral somatosensation, these irritants elicit a similar pattern of progressively increasing firing, followed after a rest by self-desensitization and SIR. In contrast, nicotine, menthol or mustard oil elicit irritation that decreases across trials (“desensitization”), a pattern also observed in Vc neuronal responses to these irritants. Carbonated water elicits an oral tingling sensation and excites Vc neurons largely through its conversion to carbonic acid. The good correspondence in temporal profiles for perception and neuronal activity supports a role for Vc neurons in the mediation of oral irritation. Finally, the development of preference for foods containing aversive chemicals is addressed. This may involve mere exposure, social reinforcement, the “thrill” of the strong sensation, or physiological reinforcement associated with satiety or release of endorphins by the painful stimulus.
Antioxidants & Redox Signaling | 2013
Yuxi Shan; Robert Schoenfeld; Genki Hayashi; Eleonora Napoli; Tasuku Akiyama; Mirela Iodi Carstens; E. Carstens; Mark A. Pook; Gino Cortopassi
AIMS Oxidative stress is thought to be involved in Friedreichs ataxia (FRDA), yet it has not been demonstrated in the target neurons that are first to degenerate. Using the YG8R mouse model of FRDA, microarray and neuritic growth experiments were carried out in the dorsal root ganglion (DRG), the primary site of neurodegeneration in this disease. RESULTS YG8R hemizygous mice exhibited defects in movement, and DRG neurites had growth defects. Microarray of DRG tissue identified decreased transcripts encoding the antioxidants, including peroxiredoxins, glutaredoxins, and glutathione S-transferase, and these were confirmed by immunoblots and quantitative real-time PCR. Because the decreased gene transcripts are the known targets of the antioxidant transcription factor nuclear factor-E2-related factor-2 (Nrf2), Nrf2 expression was measured; it was significantly decreased at the transcript and protein level in both the DRG and the cerebella of the YG8R hemizygous mouse; further, frataxin expression was significantly correlated with Nrf2 expression. Functionally, in YG8R hemizygous DRG, the total glutathione levels were reduced and explanted cells were more sensitive to the thioredoxin reductase (TxnRD) inhibitor auranofin, a thiol oxidant. In cell models of FRDA, including Schwann and the DRG, frataxin deficiency caused a decreased expression of the Nrf2 protein level in the nucleus, but not a defect in its translocation from the cytosol. Further, frataxin-deficient cells had decreased enzyme activity and expression of TxnRD, which is regulated by Nrf2, and were sensitive the TxnRD inhibitor auranofin. INNOVATION AND CONCLUSION These results support a mechanistic hypothesis in which frataxin deficiency decreases Nrf2 expression in vivo, causing the sensitivity to oxidative stress in target tissues the DRG and the cerebella, which contributes to the process of neurodegeneration.
Neuroscience Letters | 2005
Christopher T. Simons; Jason M. Cuellar; Justin A. Moore; Kent E. Pinkerton; Dale Uyeminami; Mirela Iodi Carstens; E. Carstens
Direct exposure of rats to tobacco smoke induces antinociception. We presently investigated if this antinociception is mediated via nicotinic and/or mu-opioid receptors. Adult male rats were surgically implanted with Alzet osmotic minipumps that delivered either saline (control), the nicotinic antagonist mecamylamine, or the opiate antagonist naltrexone (3 mg/kg/day i.v. for 21 days). Nocifensive responses were assessed on alternate days using tail-flick reflex latency (TFL) over a 3-week period. During the second week, the rats were exposed to concentrated cigarette smoke in an environmental chamber for 6 h/day for 5 consecutive days; a control group was similarly exposed to filtered cigarette smoke. Rats receiving mecamylamine and naltrexone exhibited a significant weight loss after the first day of infusion. All treatment groups additionally exhibited significant weight loss during exposure to unfiltered or filtered smoke. The saline group exhibited significant antinociception on the first day of smoke exposure with rapid development of tolerance. The mecamylamine and naltrexone groups did not exhibit significant antinociception. Controls exposed to filtered smoke (with approximately 50% lower nicotine concentration) also exhibited significant analgesia on the first exposure day with rapid development of tolerance. Exposure to high levels of cigarette smoke, or to filtered smoke with a lower nicotine concentration in the vapor phase, induces antinociception with rapid development of tolerance. The antinociceptive effect appears to be mediated via nicotinic and mu-opioid receptors.
Journal of Investigative Dermatology | 2012
Tasuku Akiyama; Mirela Iodi Carstens; Akihiko Ikoma; Ferda Cevikbas; Martin Steinhoff; E. Carstens
Lightly touching normal skin near a site of itch can elicit itch sensation, a phenomenon known as alloknesis. To investigate the neural mechanisms of alloknesis, we have developed an animal model. Low-threshold mechanical stimulation of the skin normally does not elicit any response in naïve C57/BL6 mice. Following acute intradermal (id) injection of histamine in the rostral back, mechanical stimulation 7 mm from the injection site elicited discrete hindlimb scratch bouts directed toward the stimulus. This began at 10 min and peaked 20–40 min post-histamine, declining over the next hour. Histamine itself elicited bouts of scratching not associated with the mechanical stimulus, that ceased after 30 min. Histamine- and touch-evoked scratching was inhibited by the μ-opiate antagonist naltrexone. Touch-evoked scratching was observed following id 5-HT, a PAR-4 agonist and a MrgprC11 agonist BAM8-22, but not chloroquine or a PAR-2 agonist. The histamine H1 receptor antagonist terfenadine prevented scratching and alloknesis evoked by histamine, but not 5-HT, a PAR-4 agonist or a MrgprC11 agonist. In mice with experimental dry skin, there was a time-dependent increase in spontaneous and touch-evoked scratching. This animal model, which to our knowledge is previously unreported, appears to be useful to investigate neural mechanisms of itch and alloknesis.
Acta Dermato-venereologica | 2010
Tasuku Akiyama; Mirela Iodi Carstens; E. Carstens
Intradermal microinjection of the pruritogen histamine, or the algogen capsaicin, in the mouse cheek differentially elicits mainly hindlimb scratching or ipsilateral forelimb wiping, respectively. We investigated the dose-dependency of these responses elicited by various pruritogens and algogens, and µ-opioid modulation. Histamine, 5-hydro-xytryptamine (5-HT) and agonists of protease-activated receptors PAR-2 and PAR-4, all elicited dose-related hindlimb scratching bouts with little forelimb wiping. In contrast, capsaicin, allyl isothiocyanate and bradykinin elicited dose-related forelimb wiping with little scratching. Morphine reduced capsaicin-evoked wiping but not pruritogen-evoked scratching. The µ-antagonist naltrexone decreased pruritogen-evoked scratching but not capsaicin-evoked wiping. A cowhage spicule inserted intradermal elicited equivalent scratching and wiping, while inactivated cowhage spicules loaded with histamine or capsaicin elicited significantly more scratching or wiping, respectively. The mouse cheek injection model appears to be a useful behavioral test that distinguishes between itch and pain.