Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Avi M. Mandell is active.

Publication


Featured researches published by Avi M. Mandell.


Science | 2009

Strong Release of Methane on Mars in Northern Summer 2003

Michael J. Mumma; Geronimo L. Villanueva; Robert E. Novak; Tilak Hewagama; Boncho P. Bonev; Michael A. DiSanti; Avi M. Mandell; Michael D. Smith

Living systems produce more than 90% of Earths atmospheric methane; the balance is of geochemical origin. On Mars, methane could be a signature of either origin. Using high-dispersion infrared spectrometers at three ground-based telescopes, we measured methane and water vapor simultaneously on Mars over several longitude intervals in northern early and late summer in 2003 and near the vernal equinox in 2006. When present, methane occurred in extended plumes, and the maxima of latitudinal profiles imply that the methane was released from discrete regions. In northern midsummer, the principal plume contained ∼19,000 metric tons of methane, and the estimated source strength (≥0.6 kilogram per second) was comparable to that of the massive hydrocarbon seep at Coal Oil Point in Santa Barbara, California.


The Astrophysical Journal | 2013

Infrared Transmission Spectroscopy of the Exoplanets HD 209458b and XO-1b Using the Wide Field Camera-3 on the Hubble Space Telescope

Drake Deming; Ashlee Wilkins; Peter Rankin McCullough; Adam Burrows; Jonathan J. Fortney; Eric Agol; Ian Dobbs-Dixon; Nikku Madhusudhan; Nicolas Crouzet; J.-M. Desert; Ronald L. Gilliland; Korey Haynes; Heather A. Knutson; Michael R. Line; Zazralt Magic; Avi M. Mandell; Sukrit Ranjan; David Charbonneau; Mark Clampin; Sara Seager

Exoplanetary transmission spectroscopy in the near-infrared using the Hubble Space Telescope (HST) NICMOS is currently ambiguous because different observational groups claim different results from the same data, depending on their analysis methodologies. Spatial scanning with HST/WFC3 provides an opportunity to resolve this ambiguity. We here report WFC3 spectroscopy of the giant planets HD 209458b and XO-1b in transit, using spatial scanning mode for maximum photon-collecting efficiency. We introduce an analysis technique that derives the exoplanetary transmission spectrum without the necessity of explicitly decorrelating instrumental effects, and achieves nearly photon-limited precision even at the high flux levels collected in spatial scan mode. Our errors are within 6% (XO-1) and 26% (HD 209458b) of the photon-limit at a resolving power of λ/δλ ~ 70, and are better than 0.01% per spectral channel. Both planets exhibit water absorption of approximately 200 ppm at the water peak near 1.38 μm. Our result for XO-1b contradicts the much larger absorption derived from NICMOS spectroscopy. The weak water absorption we measure for HD 209458b is reminiscent of the weakness of sodium absorption in the first transmission spectroscopy of an exoplanet atmosphere by Charbonneau et al. Model atmospheres having uniformly distributed extra opacity of 0.012 cm2 g−1 account approximately for both our water measurement and the sodium absorption. Our results for HD 209458b support the picture advocated by Pont et al. in which weak molecular absorptions are superposed on a transmission spectrum that is dominated by continuous opacity due to haze and/or dust. However, the extra opacity needed for HD 209458b is grayer than for HD 189733b, with a weaker Rayleigh component.


Science | 2006

Exotic Earths: forming habitable worlds with giant planet migration.

Sean N. Raymond; Avi M. Mandell; Steinn Sigurdsson

Close-in giant planets (e.g., “hot Jupiters”) are thought to form far from their host stars and migrate inward, through the terrestrial planet zone, via torques with a massive gaseous disk. Here we simulate terrestrial planet growth during and after giant planet migration. Several-Earth-mass planets also form interior to the migrating jovian planet, analogous to recently discovered “hot Earths.” Very-water-rich, Earth-mass planets form from surviving material outside the giant planets orbit, often in the habitable zone and with low orbital eccentricities. More than a third of the known systems of giant planets may harbor Earth-like planets.


The Astrophysical Journal | 2007

Formation of Earth-like Planets During and After Giant Planet Migration

Avi M. Mandell; Sean N. Raymond; Steinn Sigurdsson

Close-in giant planets are thought to have formed in the cold outer regions of planetary systems and migrated inward, passing through the orbital parameter space occupied by the terrestrial planets in our own solar system. We present dynamical simulations of the effects of a migrating giant planet on a disk of protoplanetary material and the subsequent evolution of the planetary system. We numerically investigate the dynamics of postmigration planetary systems over 200 million years using models with a single migrating giant planet, one migrating and one nonmigrating giant planet, and excluding the effects of a gas disk. Material that is shepherded in front of the migrating giant planet by moving mean motion resonances accretes into hot Earths, but survival of these bodies is strongly dependent on dynamical damping. Furthermore, a significant amount of material scattered outward by the giant planet survives in highly excited orbits; the orbits of these scattered bodies are then damped by gas drag and dynamical friction over the remaining accretion time. In all simulations Earth-mass planets accrete on approximately 100 Myr timescales, often with orbits in the habitable zone. These planets range in mass and water content, with both quantities increasing with the presence of a gas disk and decreasing with the presence of an outer giant planet. We use scaling arguments and previous results to derive a simple recipe that constrains which giant planet systems are able to form and harbor Earth-like planets in the habitable zone, demonstrating that roughly one-third of the known planetary systems are potentially habitable.


Monthly Notices of the Royal Astronomical Society | 2008

Observable consequences of planet formation models in systems with close-in terrestrial planets

Sean N. Raymond; Rory Barnes; Avi M. Mandell

To date, two planetary systems have been discovered with close-in, terrestrial-mass planets (� 5‐10 M ⊕ ). Many more such discoveries are anticipated in the coming years with radial velocity and transit searches. Here we investigate the different mechanisms that could form ‘hot Earths’ and their observable predictions. Models include: (1) in situ accretion; (2) formation at larger orbital distance followed by inward ‘type 1’ migration; (3) formation from material being ‘shepherded’ inward by a migrating gas giant planet; (4) formation from material being shepherded by moving secular resonances during dispersal of the protoplanetary disc; (5) tidal circularization of eccentric terrestrial planets with close-in perihelion distances and (6) photoevaporative mass-loss of a close-in giant planet. Models 1‐4 have been validated in previous work. We show that tidal circularization can form hot Earths, but only for relatively massive planets (� 5M ⊕) with very close-in perihelion distances (� 0.025 au), and even then the net inward movement in orbital distance is at most only 0.1‐0.15 au. For planets of less than ∼70 M ⊕ , photoevaporation can remove the planet’s envelope and leave behind the solid core on a Gyr time-scale, but only for planets inside 0.025‐0.05 au. Using two quantities that are observable by current and upcoming missions, we show that these models each produce unique signatures, and can be observationally distinguished. These observables are the planetary system architecture (detectable with radial velocities, transits and transit timing) and the bulk composition of transiting close-in terrestrial planets (measured by transits via the planet’s radius).


Astronomy and Astrophysics | 2011

Debris disks as signposts of terrestrial planet formation

Sean N. Raymond; Philip J. Armitage; Amaya Moro-Martin; Mark Booth; Mark C. Wyatt; John C. Armstrong; Avi M. Mandell; Franck Selsis; Andrew A. West

There exists strong circumstantial evidence from their eccentric orbits that most of the known extra-solar planetary systems are the survivors of violent dynamical instabilities. Here we explore the effect of giant planet instabilities on the formation and survival of terrestrial planets. We numerically simulate the evolution of planetary systems around Sun-like stars that include three components: (i) an inner disk of planetesimals and planetary embryos; (ii) three giant planets at Jupiter-Saturn distances; and (iii) an outer disk of planetesimals comparable to estimates of the primitive Kuiper belt. We calculate the dust production and spectral energy distribution of each system by assuming that each planetesimal particle represents an ensemble of smaller bodies in collisional equilibrium. Our main result is a strong correlation between the evolution of the inner and outer parts of planetary systems, i.e. between the presence of terrestrial planets and debris disks. Strong giant planet instabilities – that produce very eccentric surviving planets – destroy all rocky material in the system, including fully-formed terrestrial planets if the instabilities occur late, and also destroy the icy planetesimal population. Stable or weakly unstable systems allow terrestrial planets to accrete in their inner regions and significant dust to be produced in their outer regions, detectable at mid-infrared wavelengths as debris disks. Stars older than ∼100 Myr with bright cold dust emission (in particular at λ ∼ 70 μm) signpost dynamically calm environments that were conducive to efficient terrestrial accretion. Such emission is present around ∼16% of billion-year old Solar-type stars. Our simulations yield numerous secondary results: 1) the typical eccentricities of as-yet undetected terrestrial planets are ∼0.1 but there exists a novel class of terrestrial planet system whose single planet undergoes large amplitude oscillations in orbital eccentricity and inclination; 2) by scaling our systems to match the observed semimajor axis distribution of giant exoplanets, we predict that terrestrial exoplanets in the same systems should be a few times more abundant at ∼0.5 AU than giant or terrestrial exoplanets at 1 AU; 3) the Solar System appears to be unusual in terms of its combination of a rich terrestrial planet system and a low dust content. This may be explained by the weak, outward-directed instability that is thought to have caused the late heavy bombardment.


Publications of the Astronomical Society of the Pacific | 2014

Observations of Transiting Exoplanets with the James Webb Space Telescope (JWST)

Charles A. Beichman; Bjoern Benneke; Heather A. Knutson; Roger Smith; Pierre Olivier Lagage; Courtney D. Dressing; David W. Latham; Jonathan I. Lunine; Stephan M. Birkmann; Pierre Ferruit; Giovanna Giardino; Eliza M.-R. Kempton; Sean J. Carey; Jessica E. Krick; Pieter Deroo; Avi M. Mandell; Michael E. Ressler; Avi Shporer; Mark R. Swain; Gautam Vasisht; George R. Ricker; Jeroen Bouwman; Ian J. M. Crossfield; Tom Greene; Steve B. Howell; Jessie L. Christiansen; David R. Ciardi; Mark Clampin; Matt Greenhouse; A. Sozzetti

This article summarizes a workshop held on March, 2014, on the potential of the James Webb Space Telescope (JWST) to revolutionize our knowledge of the physical properties of exoplanets through transit observations. JWSTs unique combination of high sensitivity and broad wavelength coverage will enable the accurate measurement of transits with high signal-to-noise. Most importantly, JWST spectroscopy will investigate planetary atmospheres to determine atomic and molecular compositions, to probe vertical and horizontal structure, and to follow dynamical evolution, i.e. exoplanet weather. JWST will sample a diverse population of planets of varying masses and densities in a wide variety of environments characterized by a range of host star masses and metallicities, orbital semi-major axes and eccentricities. A broad program of exoplanet science could use a substantial fraction of the overall JWST mission.


The Astrophysical Journal | 2015

Lower Limits on Aperture Size for an ExoEarth-Detecting Coronagraphic Mission

Christopher C. Stark; Aki Roberge; Avi M. Mandell; Mark Clampin; Shawn D. Domagal-Goldman; Michael W. McElwain; Karl R. Stapelfeldt

The yield of Earth-like planets will likely be a primary science metric for future space-based missions that will drive telescope aperture size. Maximizing the exoEarth candidate yield is therefore critical to minimizing the required aperture. Here we describe a method for exoEarth candidate yield maximization that simultaneously optimizes, for the first time, the targets chosen for observation, the number of visits to each target, the delay time between visits, and the exposure time of every observation. This code calculates both the detection time and multi-wavelength spectral characterization time required for planets. We also refine the astrophysical assumptions used as inputs to these calculations, relying on published estimates of planetary occurrence rates as well as theoretical and observational constraints on terrestrial planet sizes and classical habitable zones. Given these astrophysical assumptions, optimistic telescope and instrument assumptions, and our new completeness code that produces the highest yields to date, we suggest lower limits on the aperture size required to detect and characterize a statistically-motivated sample of exoEarths.


The Astrophysical Journal | 2014

Maximizing the ExoEarth candidate yield from a future direct imaging mission

Christopher C. Stark; Aki Roberge; Avi M. Mandell; Tyler D. Robinson

ExoEarth yield is a critical science metric for future exoplanet imaging missions. Here we estimate exoEarth candidate yield using single visit completeness for a variety of mission design and astrophysical parameters. We review the methods used in previous yield calculations and show that the method choice can significantly impact yield estimates as well as how the yield responds to mission parameters. We introduce a method, called Altruistic Yield Optimization, that optimizes the target list and exposure times to maximize mission yield, adapts maximally to changes in mission parameters, and increases exoEarth candidate yield by up to 100% compared to previous methods. We use Altruistic Yield Optimization to estimate exoEarth candidate yield for a large suite of mission and astrophysical parameters using single visit completeness. We find that exoEarth candidate yield is most sensitive to telescope diameter, followed by coronagraph inner working angle, followed by coronagraph contrast, and finally coronagraph contrast noise floor. We find a surprisingly weak dependence of exoEarth candidate yield on exozodi level. Additionally, we provide a quantitative approach to defining a yield goal for future exoEarth-imaging missions.


The Astrophysical Journal | 2015

Spectroscopic Evidence for a Temperature Inversion in the Dayside Atmosphere of Hot Jupiter WASP-33b

Korey Haynes; Avi M. Mandell; Nikku Madhusudhan; Drake Deming; Heather A. Knutson

We present observations of two occultations of the extrasolar planet WASP-33b using the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope, which allow us to constrain the temperature structure and composition of its dayside atmosphere. WASP-33b is the most highly irradiated hot Jupiter discovered to date, and the only exoplanet known to orbit a δ-Scuti star. We observed in spatial scan mode to decrease instrument systematic effects in the data, and removed fluctuations in the data due to stellar pulsations. The rms for our final, binned spectrum is 1.05 times the photon noise. We compare our final spectrum, along with previously published photometric data, to atmospheric models of WASP-33b spanning a wide range in temperature profiles and chemical compositions. We find that the data require models with an oxygen-rich chemical composition and a temperature profile that increases at high altitude. We find that our measured spectrum displays an excess in the measured flux toward short wavelengths that is best explained as emission from TiO. If confirmed by additional measurements at shorter wavelengths, this planet would become the first hot Jupiter with a thermal inversion that can be definitively attributed to the presence of TiO in its dayside atmosphere.

Collaboration


Dive into the Avi M. Mandell's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Heather A. Knutson

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Aki Roberge

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Prabal Saxena

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Qian Gong

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tyler D. Groff

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Nikku Madhusudhan

University of Central Florida

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge