Jonathan J. Fortney
University of California, Santa Cruz
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jonathan J. Fortney.
Science | 2010
William J. Borucki; David G. Koch; Gibor Basri; Natalie M. Batalha; Timothy M. Brown; Douglas A. Caldwell; John C. Caldwell; Jørgen Christensen-Dalsgaard; William D. Cochran; Edna DeVore; Edward W. Dunham; Andrea K. Dupree; Thomas Gautier; John C. Geary; Ronald L. Gilliland; Alan Gould; Steve B. Howell; Jon M. Jenkins; Y. Kondo; David W. Latham; Geoffrey W. Marcy; Soren Meibom; Hans Kjeldsen; Jack J. Lissauer; David G. Monet; David R. Morrison; Dimitar D. Sasselov; Jill Tarter; Alan P. Boss; D. E. Brownlee
Detecting Distant Planets More than 400 planets have been detected outside the solar system, most of which have masses similar to that of the gas giant planet, Jupiter. Borucki et al. (p. 977, published online 7 January) summarize the planetary findings derived from the first six weeks of observations with the Kepler mission whose objective is to search for and determine the frequency of Earth-like planets in the habitable zones of other stars. The results include the detection of five new exoplanets, which confirm the existence of planets with densities substantially lower than those predicted for gas giant planets. Initial observations confirm the existence of planets with densities lower than those predicted for gas giant planets. The Kepler mission was designed to determine the frequency of Earth-sized planets in and near the habitable zone of Sun-like stars. The habitable zone is the region where planetary temperatures are suitable for water to exist on a planet’s surface. During the first 6 weeks of observations, Kepler monitored 156,000 stars, and five new exoplanets with sizes between 0.37 and 1.6 Jupiter radii and orbital periods from 3.2 to 4.9 days were discovered. The density of the Neptune-sized Kepler-4b is similar to that of Neptune and GJ 436b, even though the irradiation level is 800,000 times higher. Kepler-7b is one of the lowest-density planets (~0.17 gram per cubic centimeter) yet detected. Kepler-5b, -6b, and -8b confirm the existence of planets with densities lower than those predicted for gas giant planets.
The Astrophysical Journal | 2011
William J. Borucki; David G. Koch; Gibor Basri; Natalie M. Batalha; Timothy M. Brown; Stephen T. Bryson; Douglas A. Caldwell; Jørgen Christensen-Dalsgaard; William D. Cochran; Edna DeVore; Edward W. Dunham; Thomas N. Gautier; John C. Geary; Ronald L. Gilliland; Alan Gould; Steve B. Howell; Jon M. Jenkins; David W. Latham; Jack J. Lissauer; Geoffrey W. Marcy; Jason F. Rowe; Dimitar D. Sasselov; Alan P. Boss; David Charbonneau; David R. Ciardi; Laurance R. Doyle; Andrea K. Dupree; Eric B. Ford; Jonathan J. Fortney; Matthew J. Holman
On 2011 February 1 the Kepler mission released data for 156,453 stars observed from the beginning of the science observations on 2009 May 2 through September 16. There are 1235 planetary candidates with transit-like signatures detected in this period. These are associated with 997 host stars. Distributions of the characteristics of the planetary candidates are separated into five class sizes: 68 candidates of approximately Earth-size (R_p < 1.25 R_⊕), 288 super-Earth-size (1.25 R_⊕ ≤ R_p < 2 R_⊕), 662 Neptune-size (2 R_⊕ ≤ R_p < 6 R_⊕), 165 Jupiter-size (6 R_⊕ ≤ R_p < 15 R_⊕), and 19 up to twice the size of Jupiter (15 R_⊕ ≤ R_p < 22 R_⊕). In the temperature range appropriate for the habitable zone, 54 candidates are found with sizes ranging from Earth-size to larger than that of Jupiter. Six are less than twice the size of the Earth. Over 74% of the planetary candidates are smaller than Neptune. The observed number versus size distribution of planetary candidates increases to a peak at two to three times the Earth-size and then declines inversely proportional to the area of the candidate. Our current best estimates of the intrinsic frequencies of planetary candidates, after correcting for geometric and sensitivity biases, are 5% for Earth-size candidates, 8% for super-Earth-size candidates, 18% for Neptune-size candidates, 2% for Jupiter-size candidates, and 0.1% for very large candidates; a total of 0.34 candidates per star. Multi-candidate, transiting systems are frequent; 17% of the host stars have multi-candidate systems, and 34% of all the candidates are part of multi-candidate systems.
Astrophysical Journal Supplement Series | 2013
Natalie M. Batalha; Jason F. Rowe; Stephen T. Bryson; Christopher J. Burke; Douglas A. Caldwell; Jessie L. Christiansen; Fergal Mullally; Susan E. Thompson; Timothy M. Brown; Andrea K. Dupree; Daniel C. Fabrycky; Eric B. Ford; Jonathan J. Fortney; Ronald L. Gilliland; Howard Isaacson; David W. Latham; Geoffrey W. Marcy; Samuel N. Quinn; Darin Ragozzine; Avi Shporer; William J. Borucki; David R. Ciardi; Thomas N. Gautier; Michael R. Haas; Jon M. Jenkins; David G. Koch; Jack J. Lissauer; William Rapin; Gibor Basri; Alan P. Boss
New transiting planet candidates are identified in 16 months (2009 May-2010 September) of data from the Kepler spacecraft. Nearly 5000 periodic transit-like signals are vetted against astrophysical and instrumental false positives yielding 1108 viable new planet candidates, bringing the total count up to over 2300. Improved vetting metrics are employed, contributing to higher catalog reliability. Most notable is the noise-weighted robust averaging of multi-quarter photo-center offsets derived from difference image analysis that identifies likely background eclipsing binaries. Twenty-two months of photometry are used for the purpose of characterizing each of the candidates. Ephemerides (transit epoch, T_0, and orbital period, P) are tabulated as well as the products of light curve modeling: reduced radius (R_P/R_★), reduced semimajor axis (d/R_★), and impact parameter (b). The largest fractional increases are seen for the smallest planet candidates (201% for candidates smaller than 2 R_⊕ compared to 53% for candidates larger than 2 R_⊕) and those at longer orbital periods (124% for candidates outside of 50 day orbits versus 86% for candidates inside of 50 day orbits). The gains are larger than expected from increasing the observing window from 13 months (Quarters 1-5) to 16 months (Quarters 1-6) even in regions of parameter space where one would have expected the previous catalogs to be complete. Analyses of planet frequencies based on previous catalogs will be affected by such incompleteness. The fraction of all planet candidate host stars with multiple candidates has grown from 17% to 20%, and the paucity of short-period giant planets in multiple systems is still evident. The progression toward smaller planets at longer orbital periods with each new catalog release suggests that Earth-size planets in the habitable zone are forthcoming if, indeed, such planets are abundant.
The Astrophysical Journal | 2007
Jonathan J. Fortney; Mark S. Marley; Jason W. Barnes
Toaidinthephysicalinterpretationofplanetaryradii constrainedthroughobservationsoftransitingplanets,oreventuallydirectdetections,wecomputemodelradiiofpurehydrogen-helium,water,rock,andironplanets,alongwithvarious mixtures. Masses ranging from 0.01 Earth masses to 10 Jupiter masses at orbital distances of 0.02–10 AU are considered. For hydrogen-helium rich planets, our models are the first to couple planetary evolution to stellar irradiation over a wide range of orbital separations (0.02–10 AU) through a nongray radiative-convective equilibrium atmosphere model. Stellar irradiation retards the contraction of giant planets, but its effect is not a simple function of theirradiationlevel:aplanetat1AUcontractsasslowlyasaplanetat0.1AU.WeconfirmtheassertionofGuillotthat very old giant planets under modest stellar irradiation (like that received by Jupiter and Saturn) develop isothermal atmospheric radiative zones once the planet’s intrinsic flux drops to a small fraction of the incident flux. For hydrogenhelium planets, we consider cores up to 90% of the total planet mass, comparable to those of Uranus and Neptune. If ‘‘hot Neptunes’’ have maintained their original masses and are not remnants of more massive planets, radii of � 0.30– 0.45RJ areexpected.Waterplanetsare � 40%–50%largerthanrockyplanets,independentofmass.Finally,weprovide tables of planetary radii at various ages and compositions, and for ice-rock-iron planets we fit our results to analytic functions, which will allow for quick composition estimates, given masses and radii, or mass estimates, given only planetary radii. These results will assist in the interpretation of observations for both the current transiting planet surveys as well as upcoming space missions, including COROT and Kepler.
Nature | 2007
Heather A. Knutson; David Charbonneau; Lori E. Allen; Jonathan J. Fortney; Eric Agol; Nicolas B. Cowan; Curtis S. Cooper; S. Thomas Megeath
‘Hot Jupiter’ extrasolar planets are expected to be tidally locked because they are close (<0.05 astronomical units, where 1 au is the average Sun–Earth distance) to their parent stars, resulting in permanent daysides and nightsides. By observing systems where the planet and star periodically eclipse each other, several groups have been able to estimate the temperatures of the daysides of these planets. A key question is whether the atmosphere is able to transport the energy incident upon the dayside to the nightside, which will determine the temperature at different points on the planet’s surface. Here we report observations of HD 189733, the closest of these eclipsing planetary systems, over half an orbital period, from which we can construct a ‘map’ of the distribution of temperatures. We detected the increase in brightness as the dayside of the planet rotated into view. We estimate a minimum brightness temperature of 973 ± 33 K and a maximum brightness temperature of 1,212 ± 11 K at a wavelength of 8 μm, indicating that energy from the irradiated dayside is efficiently redistributed throughout the atmosphere, in contrast to a recent claim for another hot Jupiter. Our data indicate that the peak hemisphere-integrated brightness occurs 16 ± 6° before opposition, corresponding to a hotspot shifted east of the substellar point. The secondary eclipse (when the planet moves behind the star) occurs 120 ± 24 s later than predicted, which may indicate a slightly eccentric orbit.
The Astrophysical Journal | 2008
Jonathan J. Fortney; Katharina Lodders; Mark S. Marley; Richard S. Freedman
We highlight the potential importance of gaseous TiO and VO opacity on the highly irradiated close-in giant planets. The atmospheres of these planets naturally fall in to two classes that are somewhat analogous to the Mand L-type dwarfs. Those that are warm enough to have appreciable opacity due to TiO and VO gases we term the “pM Class” planets, and those that are cooler, such that Ti and V are predominantly in solid condensates, we term “pL Class” planets. The optical spectra of pL Class planets are dominated by neutral atomic Na and K absorption. We calculate model atmospheres for these planets, including pressure-temperature profiles, spectra, and characteristic radiative time constants. Planets that have temperature inversions (hot stratospheres) of �2000 K and appear “anomalously” bright in the mid infrared at secondary eclipse, as was recently found for planets HD 149026b and HD 209458b, we term the pM Class. Molecular bands of TiO, VO, H2O, and CO will be seen in emission, rather than absorption. This class of planets a bsorbs incident flux and emits thermal flux from high in their atmospheres. Consequently, they will have large day/night temperature contrasts and negligible phase shifts between orbital phase and thermal emission light curves, because radiative timescales are much shorter than possible dynamical timescales. The pL Class planets absorb incident flux deeper in the atmosphere where atmospheric dynamics will more readily redistribute absorbed energy. This leads to cooler day sides, warmer night sides, and larger phase shifts in thermal emission lig ht curves. We briefly examine the transit radii for both classes of planets. The boundary between these classes is particularly dependent on the incident flux from the parent star, and less so on the temperature of the planet’s in ternal adiabat (which depends on mass and age), and surface gravity. Around a Sun-like primary, for solar composition, this boundary likely occurs at �0.04-0.05 AU, but uncertainties remain. We apply these results to pM Class transiting planets that are observable with the Spitzer Space Telescope, including HD 209458b, WASP-1b, TrES-3b, TrES-4b, HD 149026b, and others. The eccentric transiting planets HD 147506b and HD 17156b alternate between the classes during their orbits. Thermal emission in the optical from pM Class planets is significant red-ward o f 400 nm, making these planets attractive targets for optical detection via Kepler, COROT, and from the ground. The difference in the observed day/night contrast
Publications of the Astronomical Society of the Pacific | 2014
Steve B. Howell; Charlie Sobeck; Michael R. Haas; Martin Still; Fergal Mullally; John Troeltzsch; S. Aigrain; Stephen T. Bryson; Doug Caldwell; W. J. Chaplin; William D. Cochran; Daniel Huber; Geoffrey W. Marcy; A. Miglio; Joan R. Najita; Marcie Smith; Joseph D. Twicken; Jonathan J. Fortney
The K2 mission will make use of the Kepler spacecraft and its assets to expand upon Keplers groundbreaking discoveries in the fields of exoplanets and astrophysics through new and exciting observations. K2 will use an innovative way of operating the spacecraft to observe target fields along the ecliptic for the next 2-3 years. Early science commissioning observations have shown an estimated photometric precision near 400 ppm in a single 30 minute observation, and a 6-hr photometric precision of 80 ppm (both at V = 12). The K2 mission offers long-term, simultaneous optical observation of thousands of objects at a precision far better than is achievable from ground-based telescopes. Ecliptic fields will be observed for approximately 75 days enabling a unique exoplanet survey which fills the gaps in duration and sensitivity between the Kepler and TESS missions, and offers pre-launch exoplanet target identification for JWST transit spectroscopy. Astrophysics observations with K2 will include studies of young open clusters, bright stars, galaxies, supernovae, and asteroseismology.
Nature | 2011
Jack J. Lissauer; Daniel C. Fabrycky; Eric B. Ford; William J. Borucki; Francois Fressin; Geoffrey W. Marcy; Jerome A. Orosz; Jason F. Rowe; Guillermo Torres; William F. Welsh; Natalie M. Batalha; Stephen T. Bryson; Lars A. Buchhave; Douglas A. Caldwell; Joshua A. Carter; David Charbonneau; Jessie L. Christiansen; William D. Cochran; Jean-Michel Desert; Edward W. Dunham; Michael N. Fanelli; Jonathan J. Fortney; Thomas N. Gautier; John C. Geary; Ronald L. Gilliland; Michael R. Haas; Jennifer R. Hall; Matthew J. Holman; David G. Koch; David W. Latham
When an extrasolar planet passes in front of (transits) its star, its radius can be measured from the decrease in starlight and its orbital period from the time between transits. Multiple planets transiting the same star reveal much more: period ratios determine stability and dynamics, mutual gravitational interactions reflect planet masses and orbital shapes, and the fraction of transiting planets observed as multiples has implications for the planarity of planetary systems. But few stars have more than one known transiting planet, and none has more than three. Here we report Kepler spacecraft observations of a single Sun-like star, which we call Kepler-11, that reveal six transiting planets, five with orbital periods between 10 and 47 days and a sixth planet with a longer period. The five inner planets are among the smallest for which mass and size have both been measured, and these measurements imply substantial envelopes of light gases. The degree of coplanarity and proximity of the planetary orbits imply energy dissipation near the end of planet formation.
The Astrophysical Journal | 2011
Natalie M. Batalha; William J. Borucki; Stephen T. Bryson; Lars A. Buchhave; Douglas A. Caldwell; Jørgen Christensen-Dalsgaard; David R. Ciardi; Edward W. Dunham; Francois Fressin; Thomas N. Gautier; Ronald L. Gilliland; Michael R. Haas; Steve B. Howell; Jon M. Jenkins; Hans Kjeldsen; David G. Koch; David W. Latham; Jack J. Lissauer; Geoffrey W. Marcy; Jason F. Rowe; Dimitar D. Sasselov; Sara Seager; Jason H. Steffen; Guillermo Torres; Gibor Basri; Timothy M. Brown; David Charbonneau; Jessie L. Christiansen; Bruce D. Clarke; William D. Cochran
NASAs Kepler Mission uses transit photometry to determine the frequency of Earth-size planets in or near the habitable zone of Sun-like stars. The mission reached a milestone toward meeting that goal: the discovery of its first rocky planet, Kepler-10b. Two distinct sets of transit events were detected: (1) a 152 ± 4 ppm dimming lasting 1.811 ± 0.024 hr with ephemeris T [BJD] = 2454964.57375^(+0.00060)_(–0.00082) + N * 0.837495^(+0.000004)_(–0.000005) days and (2) a 376 ± 9 ppm dimming lasting 6.86 ± 0.07 hr with ephemeris T [BJD] = 2454971.6761^(+0.0020)_(–0.0023) + N * 45.29485^(+0.00065) _(–0.00076) days. Statistical tests on the photometric and pixel flux time series established the viability of the planet candidates triggering ground-based follow-up observations. Forty precision Doppler measurements were used to confirm that the short-period transit event is due to a planetary companion. The parent star is bright enough for asteroseismic analysis. Photometry was collected at 1 minute cadence for >4 months from which we detected 19 distinct pulsation frequencies. Modeling the frequencies resulted in precise knowledge of the fundamental stellar properties. Kepler-10 is a relatively old (11.9 ± 4.5 Gyr) but otherwise Sun-like main-sequence star with T_(eff) = 5627 ± 44 K, M_⋆ = 0.895 ± 0.060 M_⊙ , and R_⋆ = 1.056 ± 0.021 R_⊙. Physical models simultaneously fit to the transit light curves and the precision Doppler measurements yielded tight constraints on the properties of Kepler-10b that speak to its rocky composition: M_P = 4.56^9+1.17)_(–1.29) M_⊕, R_P = 1.416^(+0.033)_(–0.036) R_⊕, and ρ_P = 8.8^(+2.1)_(–2.9) g cm^(–3). Kepler-10b is the smallest transiting exoplanet discovered to date.
Science | 2011
Laurance R. Doyle; Joshua A. Carter; Daniel C. Fabrycky; Robert W. Slawson; Steve B. Howell; Joshua N. Winn; Jerome A. Orosz; Andrej Prˇsa; William F. Welsh; Samuel N. Quinn; David W. Latham; Guillermo Torres; Lars A. Buchhave; Geoffrey W. Marcy; Jonathan J. Fortney; Avi Shporer; Eric B. Ford; Jack J. Lissauer; Darin Ragozzine; Michael Rucker; Natalie M. Batalha; Jon M. Jenkins; William J. Borucki; David G. Koch; Christopher K. Middour; Jennifer R. Hall; Sean McCauliff; Michael N. Fanelli; Elisa V. Quintana; Matthew J. Holman
An exoplanet has been observed, comparable in size and mass to Saturn, that orbits a pair of stars. We report the detection of a planet whose orbit surrounds a pair of low-mass stars. Data from the Kepler spacecraft reveal transits of the planet across both stars, in addition to the mutual eclipses of the stars, giving precise constraints on the absolute dimensions of all three bodies. The planet is comparable to Saturn in mass and size and is on a nearly circular 229-day orbit around its two parent stars. The eclipsing stars are 20 and 69% as massive as the Sun and have an eccentric 41-day orbit. The motions of all three bodies are confined to within 0.5° of a single plane, suggesting that the planet formed within a circumbinary disk.