Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Avraham J. Treves is active.

Publication


Featured researches published by Avraham J. Treves.


Clinical Cancer Research | 2010

Clinical responses in a phase II study using adoptive transfer of short-term cultured tumor infiltration lymphocytes in metastatic melanoma patients

Michal J. Besser; Ronnie Shapira-Frommer; Avraham J. Treves; Dov Zippel; Orit Itzhaki; Liat Hershkovitz; Daphna Levy; Adva Kubi; Einat Hovav; Natalia Chermoshniuk; Bruria Shalmon; Izhar Hardan; Raphael Catane; Gal Markel; Sara Apter; Alon Ben-Nun; Iryna Kuchuk; Avichai Shimoni; Arnon Nagler; Jacob Schachter

Purpose: Adoptive cell therapy with autologous tumor-infiltrating lymphocytes (TIL) has shown promising results in metastatic melanoma patients. Although objective response rates of over 50% have been reported, disadvantages of this approach are the labor-intensive TIL production and a very high drop-out rate of enrolled patients, limiting its widespread applicability. Previous studies showed a clear correlation between short TIL culture periods and clinical response. Therefore, we used a new TIL production technique using unselected, minimally cultured, bulk TIL (Young-TIL). The use of Young-TIL is not restricted to human leukocyte antigen (HLA)-A2 patients. The purpose of this study is to explore the efficacy and toxicity of adoptively transferred Young-TIL following lympho-depleting chemotherapy in metastatic melanoma patients, refractory to interleukin-2 and chemotherapy. Experimental Design: Young-TIL cultures for 90% of the patients were successfully generated, enabling the treatment of most enrolled patients. We report here the results of 20 evaluated patients. Results: Fifty percent of the patients achieved an objective clinical response according to the Response Evaluation Criteria in Solid Tumors, including two ongoing complete remissions (20+, 4+ months) and eight partial responses (progression-free survival: 18+, 13+, 10+, 9, 6+, 4, 3+, and 3 months). All responders are currently alive. Four additional patients showed disease stabilization. Side effects were transient and manageable. Conclusion: We showed that lympho-depleting chemotherapy followed by transfer of short-term cultured TIL can mediate tumor regression in 50% of metastatic melanoma with manageable toxicity. The convincing clinical results combined with the simplification of the process may thus have a major effect on cell therapy of cancer. Clin Cancer Res; 16(9); 2646–55. ©2010 AACR.


Clinical Cancer Research | 2013

Adoptive Transfer of Tumor-Infiltrating Lymphocytes in Patients with Metastatic Melanoma: Intent-to-Treat Analysis and Efficacy after Failure to Prior Immunotherapies

Michal J. Besser; Ronnie Shapira-Frommer; Orit Itzhaki; Avraham J. Treves; Douglas Zippel; Daphna Levy; Adva Kubi; Noa Shoshani; Dragoslav Zikich; Yaara Ohayon; Daniel Ohayon; Bruria Shalmon; Gal Markel; Ronit Yerushalmi; Sara Apter; Alon Ben-Nun; Eytan Ben-Ami; Avichai Shimoni; Arnon Nagler; Jacob Schachter

Purpose: Adoptive cell transfer (ACT) using autologous tumor-infiltrating lymphocytes (TIL) was reported to yield objective responses in about 50% of metastatic patients with melanoma. Here, we present the intent-to-treat analysis of TIL ACT and analyze parameters predictive to response as well as the impact of other immunotherapies. Experimental Design: Eighty patients with stage IV melanoma were enrolled, of which 57 were treated with unselected/young TIL and high-dose interleukin-2 (IL-2) following nonmyeloablative lymphodepleting conditioning. Results: TIL cultures were established from 72 of 80 enrolled patients. Altogether 23 patients were withdrawn from the study mainly due to clinical deterioration during TIL preparation. The overall response rate and median survival was 29% and 9.8 months for enrolled patients and 40% and 15.2 months for treated patients. Five patients achieved complete and 18 partial remission. All complete responders are on unmaintained remission after a median follow-up of 28 months and the 3-year survival of responding patients was 78%. Multivariate analysis revealed blood lactate-dehydrogenase levels, gender, days of TIL in culture, and the total number of infused CD8+ cells as independent predictive markers for clinical outcome. Thirty-two patients received the CTLA-4-blocking antibody ipilimumab prior or post TIL infusion. Retrospective analysis revealed that nonresponders to ipilimumab or IL-2 based therapy had the same overall response rate to ACT as other patients receiving TIL. No additional toxicities to TIL therapy occurred following ipilimumab treatment. Conclusion: Adoptive transfer of TIL can yield durable and complete responses in patients with refractory melanoma, even when other immunotherapies have failed. Clin Cancer Res; 19(17); 4792–800. ©2013 AACR.


Biochemical and Biophysical Research Communications | 2008

MDR1 expression identifies human melanoma stem cells

Gilmor Keshet; Itamar Goldstein; Orit Itzhaki; Karen Cesarkas; Liraz Shenhav; Arkadi Yakirevitch; Avraham J. Treves; Jacob Schachter; Ninette Amariglio; Gideon Rechavi

ABC transporters are often found to be inherently expressed in a wide variety of stem cells, where they provide improved protection from toxins. We found a subpopulation of human melanoma cells expressing multidrug-resistance gene product 1 (MDR1). This fraction co-expresses the ABC transporters, ABCB5 and ABCC2 in addition to the stem cell markers, nanog and human telomerase reverse transcriptase (hTERT). The clonogenicity and self-renewal capacity of MDR1(+) melanoma cells were investigated in single cell settings using the limiting dilution assay. We found that the MDR1(+) cells, isolated by FACS sorting, demonstrated a higher self-renewal capacity than the MDR1(-) fraction, a key stem cell feature. Moreover, MDR1(+) cells had higher ability to form spheres in low attachment conditions, a hallmark of cancer. In conclusion, these novel findings imply that the MDR1(+) cells represent melanoma stem cells and thus should be considered as a unique cellular target for future anti-melanoma therapies.


Journal of Immunotherapy | 2009

Minimally Cultured or Selected Autologous Tumor-infiltrating Lymphocytes After a Lympho-depleting Chemotherapy Regimen in Metastatic Melanoma Patients

Michal J. Besser; Ronnie Shapira-Frommer; Avraham J. Treves; Dov Zippel; Orit Itzhaki; Ester Schallmach; Adva Kubi; Bruria Shalmon; Izhar Hardan; Raphael Catane; Eran Segal; Gal Markel; Sara Apter; Alon Ben Nun; Iryna Kuchuk; Avichai Shimoni; Arnon Nagler; Jacob Schachter

Adoptive cell therapy with autologous tumor-infiltrating lymphocytes (TIL) and high-dose interleukin-2 (IL-2), after nonmyeloablative chemotherapy, has been shown to result in tumor regression in half of refractory metastatic melanoma patients. In the present study, we describe 2 separate clinical protocols. Twelve patients were treated with “Selected”-TIL, as previously reported and 8 patients with the modified version of “Young”-TIL. Selected-TIL protocol required the establishment of multiple T-cell cultures from 1 patient and in vitro selection of cultures secreting interferon-γ upon antigenic stimulation. In contrast, Young-TIL are minimally cultured T cells with superior in vitro features that do not require further selection. Two of 12 Selected-TIL patients experienced objective clinical responses (1 complete response, 1 partial response). Out of 8 treated Young-TIL patients, 1 experienced complete response, 2 partial response, and 4 patients had disease stabilization. Twenty-one of 33 enrolled Selected-TIL patients were excluded from the protocol, mainly as cultures failed the interferon-γ selection criteria or due to clinical deterioration, compared with only 3 Young-TIL patients. Expected bone marrow suppression and high-dose IL-2 toxicity were transient. There was no treatment-related mortality. This study vindicates the feasibility and effectiveness of TIL technology and calls for further efforts to implement and enhance this modality. The use of minimally cultured, unselected Young-TIL enables the treatment of most enrolled patients. Although the cohort of Young-TIL patients treated so far is rather small and the follow-up short, the response rate is encouraging.


Journal of Immunotherapy | 2011

Establishment and large-scale expansion of minimally cultured young tumor infiltrating lymphocytes for adoptive transfer therapy

Orit Itzhaki; Einat Hovav; Yaara Ziporen; Daphna Levy; Adva Kubi; Dragoslav Zikich; Liat Hershkovitz; Avraham J. Treves; Bruria Shalmon; Douglas Zippel; Gal Markel; Ronnie Shapira-Frommer; Jacob Schachter; Michal J. Besser

Treatment of metastatic melanoma patients with adoptively transferred tumor infiltrating lymphocytes (TIL) has developed into an effective therapy. Various studies reported objective responses of 50% and more. The use of unselected, minimally cultured, bulk TIL (Young-TIL) has simplified the TIL production process and may therefore, allow the accessibility of this approach to cancer centers worldwide. This article describes the precise process leading to the large-scale production of Young-TIL for therapy. We have enrolled 55 melanoma patients and optimized their Young-TIL generation process. Young-TIL cultures were successfully established for 51 of 55 (93%) patients in 16.7±5.5 days. In a large-scale expansion procedure Young-TIL of 32 patients were further expanded to treatment levels, resulting in a final number of 4.5×1010 ±2.0×1010 TIL. Fifteen of 31 (48%) patients, who were evaluated, achieved a clinical response, including 4 complete and 11 partial responses. We confirmed the significant correlation between short culture duration, high number of infused cells, and tumor regression. A high percentage of CD8+ T cells in the infusion product was beneficial to achieve an objective response. All responding patients were treated with Young-TIL cultures established in <20 days. In summary, we describe here an efficient and reliable method to generate Young-TIL for adoptive transfer therapy, which may easily be adopted by other cancer centers and can lead to objective responses in 50% of refractory melanoma patients. In the future this approach may be used also in other types of malignancies.


Journal of Immunology | 2006

Inhibition of human tumor-infiltrating lymphocyte effector functions by the homophilic carcinoembryonic cell adhesion molecule 1 interactions.

Gal Markel; Rachel Seidman; Noam Stern; Tali Cohen-Sinai; Orit Izhaki; Gil Katz; Michal J. Besser; Avraham J. Treves; Richard S. Blumberg; Ron Loewenthal; Ofer Mandelboim; Arie Orenstein; Jacob Schachter

Efficient antitumor immune response requires the coordinated function of integrated immune components, but is finally exerted by the differentiated effector tumor-infiltrating lymphocytes (TIL). TIL cells comprise, therefore, an exciting platform for adoptive cell transfer (ACT) in cancer. In this study, we show that the inhibitory carcinoembryonic Ag cell adhesion molecule 1 (CEACAM1) protein is found on virtually all human TIL cells following preparation protocols of ACT treatment for melanoma. We further demonstrate that the CEACAM1 homophilic interactions inhibit the TIL effector functions, such as specific killing and IFN-γ release. These results suggest that CEACAM1 may impair in vivo the antitumor response of the differentiated TIL. Importantly, CEACAM1 is commonly expressed by melanoma and its presence is associated with poor prognosis. Remarkably, the prolonged coincubation of reactive TIL cells with their melanoma targets results in increased functional CEACAM1 expression by the surviving tumor cells. This mechanism might be used by melanoma cells in vivo to evade ongoing destruction by tumor-reactive lymphocytes. Finally, CEACAM1-mediated inhibition may hinder in many cases the efficacy of TIL ACT treatment of melanoma. We show that the intensity of CEACAM1 expression on TIL cells constantly increases during ex vivo expansion. The implications of CEACAM1-mediated inhibition of TIL cells on the optimization of current ACT protocols and on the development of future immunotherapeutic modalities are discussed.


Cancer Immunology, Immunotherapy | 2010

Systemic dysregulation of CEACAM1 in melanoma patients.

Gal Markel; Rona Ortenberg; Rachel Seidman; Sivan Sapoznik; Nira Koren-Morag; Michal J. Besser; Jair Bar; Ronnie Shapira; Adva Kubi; Gil Nardini; Ariel Tessone; Avraham J. Treves; Eyal Winkler; Arie Orenstein; Jacob Schachter

It was previously shown that CEACAM1 on melanoma cells strongly predicts poor outcome. Here, we show a statistically significant increase of serum CEACAM1 in 64 active melanoma patients, as compared to 48 patients with no evidence of disease and 37 healthy donors. Among active patients, higher serum CEACAM1 correlated with LDH values and with decreased survival. Multivariate analysis with neutralization of LDH showed that increased serum CEACAM1 carries a hazard ratio of 2.40. In vitro, soluble CEACAM1 was derived from CEACAM1(+), but neither from CEACAM1(−) melanoma cells nor from CEACAM1(+) lymphocytes, and directly correlated with the number of CEACAM1(+) melanoma cells. Production of soluble CEACAM1 depended on intact de novo protein synthesis and secretion machineries, but not on metalloproteinase function. An unusually high percentage of CEACAM1(+) circulating NK and T lymphocytes was demonstrated in melanoma patients. CEACAM1 inhibited killing activity in functional assays. CEACAM1 expression could not be induced on lymphocytes by serum from patients with high CEACAM1 expression. Further, expression of other NK receptors was impaired, which collectively indicate on a general abnormality. In conclusion, the systemic dysregulation of CEACAM1 in melanoma patients further denotes the role of CEACAM1 in melanoma and may provide a basis for new tumor monitoring and prognostic platforms.


Clinical & Developmental Immunology | 2010

Focus on Adoptive T Cell Transfer Trials in Melanoma

Liat Hershkovitz; Jacob Schachter; Avraham J. Treves; Michal J. Besser

Adoptive Cell Transfer (ACT) of Tumor-Infiltrating Lymphocytes (TIL) in combination with lymphodepletion has proven to be an effective treatment for metastatic melanoma patients, with an objective response rate in 50%–70% of the patients. It is based on the ex vivo expansion and activation of tumor-specific T lymphocytes extracted from the tumor and their administration back to the patient. Various TIL-ACT trials, which differ in their TIL generation procedures and patient preconditioning, have been reported. In the latest clinical studies, genetically engineered peripheral T cells were utilized instead of TIL. Further improvement of adoptive T cell transfer depends on new investigations which seek higher TIL quality, increased durable response rates, and aim to treat more patients. Simplifying this therapy may encourage cancer centers worldwide to adopt this promising technology. This paper focuses on the latest progress regarding adoptive T cell transfer, comparing the currently available protocols and discussing their advantages, disadvantages, and implication in the future.


Immunology | 2009

Dynamic expression of protective CEACAM1 on melanoma cells during specific immune attack

Gal Markel; Rachel Seidman; Yifat Cohen; Michal J. Besser; Tali Cohen Sinai; Avraham J. Treves; Arie Orenstein; Raanan Berger; Jacob Schachter

An efficient immune response against tumours depends on a well‐orchestrated function of integrated components, but is finally exerted by effector tumour‐infiltrating lymphocytes (TIL). We have previously reported that homophilic CEACAM1 interactions inhibit the specific killing and interferon‐γ (IFN‐γ) release activities of natural killer cells and TIL. In this study a model for the investigation of melanoma cells surviving long coincubation with antigen‐specific TIL is reported. It is demonstrated that the surviving melanoma cells increase their surface CEACAM1 expression, which in turn confers enhanced resistance against fresh TIL. Furthermore, it is shown that this is an active process, driven by specific immune recognition and is at least partially mediated by lymphocyte‐derived IFN‐γ. Similar results were observed with antigen‐restricted TIL, either autologous or allogeneic, as well as with natural killer cells. The enhanced CEACAM1 expression depends, however, on the presence of IFN‐γ and sharply drops within 48 hr. This may be a mechanism that allows tumour cells to transiently develop a more resistant phenotype upon recognition by specific lymphocytes. Therefore, this work substantiates the melanoma‐promoting role of CEACAM1 and marks it as an attractive target for novel immunotherapeutic interventions.


PLOS ONE | 2009

Natural Killer Lysis Receptor (NKLR)/NKLR-Ligand Matching as a Novel Approach for Enhancing Anti-Tumor Activity of Allogeneic NK Cells

Gal Markel; Rachel Seidman; Michal J. Besser; Naama Zabari; Rona Ortenberg; Ronnie Shapira; Avraham J. Treves; Ron Loewenthal; Arie Orenstein; Arnon Nagler; Jacob Schachter

Background NK cells are key players in anti tumor immune response, which can be employed in cell-based therapeutic modalities. One of the suggested ways to amplify their anti tumor effect, especially in the field of stem cell transplantation, is by selecting donor/recipient mismatches in specific HLA, to reduce the inhibitory effect of killer Ig-like receptors (KIRs). Here we suggest an alternative approach for augmentation of anti tumor effect of allogeneic NK cells, which is founded on profile matching of donor NK lysis receptors (NKLR) phenotype with tumor lysis-ligands. Methodology/Principal Findings We show that an NKLR-mediated killing directly correlates with the NKLR expression intensity on NK cells. Considerable donor variability in the expression of CD16, NKp46, NKG2D and NKp30 on circulating NK cells, combined with the stability of phenotype in several independently performed tests over two months, indicates that NKLR-guided selection of donors is feasible. As a proof of concept, we show that melanoma cells are dominantly recognized by three NKLRs: NKG2D, NKp30 and NKp44. Notably, the expression of NKp30 on circulating NK cells among metastatic melanoma patients was significantly decreased, which diminishes their ability to kill melanoma cells. Ex vivo expansion of NK cells results not only in increased amount of cells but also in a consistently superior and predictable expression of NKG2D, NKp30 and NKp44. Moreover, expanded NK cultures with high expression of NKG2D or NKp30 were mostly derived from the corresponding NKG2Dhigh or NK30high donors. These NK cultures subsequently displayed an improved cytotoxic activity against melanoma in a HLA/KIR-ligand mismatched setup, which was NKLR-dependent, as demonstrated with blocking anti-NKG2D antibodies. Conclusions/Significance NKLR/NKLR-ligand matching reproducibly elicits enhanced NK anti-tumor response. Common NKLR recognition patterns of tumors, as demonstrated here in melanoma, would allow implementation of this approach in solid malignancies and potentially in hematological malignancies, either independently or in adjunction to other modalities.

Collaboration


Dive into the Avraham J. Treves's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Belkin

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge