Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Orit Itzhaki is active.

Publication


Featured researches published by Orit Itzhaki.


Clinical Cancer Research | 2010

Clinical responses in a phase II study using adoptive transfer of short-term cultured tumor infiltration lymphocytes in metastatic melanoma patients

Michal J. Besser; Ronnie Shapira-Frommer; Avraham J. Treves; Dov Zippel; Orit Itzhaki; Liat Hershkovitz; Daphna Levy; Adva Kubi; Einat Hovav; Natalia Chermoshniuk; Bruria Shalmon; Izhar Hardan; Raphael Catane; Gal Markel; Sara Apter; Alon Ben-Nun; Iryna Kuchuk; Avichai Shimoni; Arnon Nagler; Jacob Schachter

Purpose: Adoptive cell therapy with autologous tumor-infiltrating lymphocytes (TIL) has shown promising results in metastatic melanoma patients. Although objective response rates of over 50% have been reported, disadvantages of this approach are the labor-intensive TIL production and a very high drop-out rate of enrolled patients, limiting its widespread applicability. Previous studies showed a clear correlation between short TIL culture periods and clinical response. Therefore, we used a new TIL production technique using unselected, minimally cultured, bulk TIL (Young-TIL). The use of Young-TIL is not restricted to human leukocyte antigen (HLA)-A2 patients. The purpose of this study is to explore the efficacy and toxicity of adoptively transferred Young-TIL following lympho-depleting chemotherapy in metastatic melanoma patients, refractory to interleukin-2 and chemotherapy. Experimental Design: Young-TIL cultures for 90% of the patients were successfully generated, enabling the treatment of most enrolled patients. We report here the results of 20 evaluated patients. Results: Fifty percent of the patients achieved an objective clinical response according to the Response Evaluation Criteria in Solid Tumors, including two ongoing complete remissions (20+, 4+ months) and eight partial responses (progression-free survival: 18+, 13+, 10+, 9, 6+, 4, 3+, and 3 months). All responders are currently alive. Four additional patients showed disease stabilization. Side effects were transient and manageable. Conclusion: We showed that lympho-depleting chemotherapy followed by transfer of short-term cultured TIL can mediate tumor regression in 50% of metastatic melanoma with manageable toxicity. The convincing clinical results combined with the simplification of the process may thus have a major effect on cell therapy of cancer. Clin Cancer Res; 16(9); 2646–55. ©2010 AACR.


Clinical Cancer Research | 2013

Adoptive Transfer of Tumor-Infiltrating Lymphocytes in Patients with Metastatic Melanoma: Intent-to-Treat Analysis and Efficacy after Failure to Prior Immunotherapies

Michal J. Besser; Ronnie Shapira-Frommer; Orit Itzhaki; Avraham J. Treves; Douglas Zippel; Daphna Levy; Adva Kubi; Noa Shoshani; Dragoslav Zikich; Yaara Ohayon; Daniel Ohayon; Bruria Shalmon; Gal Markel; Ronit Yerushalmi; Sara Apter; Alon Ben-Nun; Eytan Ben-Ami; Avichai Shimoni; Arnon Nagler; Jacob Schachter

Purpose: Adoptive cell transfer (ACT) using autologous tumor-infiltrating lymphocytes (TIL) was reported to yield objective responses in about 50% of metastatic patients with melanoma. Here, we present the intent-to-treat analysis of TIL ACT and analyze parameters predictive to response as well as the impact of other immunotherapies. Experimental Design: Eighty patients with stage IV melanoma were enrolled, of which 57 were treated with unselected/young TIL and high-dose interleukin-2 (IL-2) following nonmyeloablative lymphodepleting conditioning. Results: TIL cultures were established from 72 of 80 enrolled patients. Altogether 23 patients were withdrawn from the study mainly due to clinical deterioration during TIL preparation. The overall response rate and median survival was 29% and 9.8 months for enrolled patients and 40% and 15.2 months for treated patients. Five patients achieved complete and 18 partial remission. All complete responders are on unmaintained remission after a median follow-up of 28 months and the 3-year survival of responding patients was 78%. Multivariate analysis revealed blood lactate-dehydrogenase levels, gender, days of TIL in culture, and the total number of infused CD8+ cells as independent predictive markers for clinical outcome. Thirty-two patients received the CTLA-4-blocking antibody ipilimumab prior or post TIL infusion. Retrospective analysis revealed that nonresponders to ipilimumab or IL-2 based therapy had the same overall response rate to ACT as other patients receiving TIL. No additional toxicities to TIL therapy occurred following ipilimumab treatment. Conclusion: Adoptive transfer of TIL can yield durable and complete responses in patients with refractory melanoma, even when other immunotherapies have failed. Clin Cancer Res; 19(17); 4792–800. ©2013 AACR.


Biochemical and Biophysical Research Communications | 2008

MDR1 expression identifies human melanoma stem cells

Gilmor Keshet; Itamar Goldstein; Orit Itzhaki; Karen Cesarkas; Liraz Shenhav; Arkadi Yakirevitch; Avraham J. Treves; Jacob Schachter; Ninette Amariglio; Gideon Rechavi

ABC transporters are often found to be inherently expressed in a wide variety of stem cells, where they provide improved protection from toxins. We found a subpopulation of human melanoma cells expressing multidrug-resistance gene product 1 (MDR1). This fraction co-expresses the ABC transporters, ABCB5 and ABCC2 in addition to the stem cell markers, nanog and human telomerase reverse transcriptase (hTERT). The clonogenicity and self-renewal capacity of MDR1(+) melanoma cells were investigated in single cell settings using the limiting dilution assay. We found that the MDR1(+) cells, isolated by FACS sorting, demonstrated a higher self-renewal capacity than the MDR1(-) fraction, a key stem cell feature. Moreover, MDR1(+) cells had higher ability to form spheres in low attachment conditions, a hallmark of cancer. In conclusion, these novel findings imply that the MDR1(+) cells represent melanoma stem cells and thus should be considered as a unique cellular target for future anti-melanoma therapies.


Journal of Immunotherapy | 2009

Minimally Cultured or Selected Autologous Tumor-infiltrating Lymphocytes After a Lympho-depleting Chemotherapy Regimen in Metastatic Melanoma Patients

Michal J. Besser; Ronnie Shapira-Frommer; Avraham J. Treves; Dov Zippel; Orit Itzhaki; Ester Schallmach; Adva Kubi; Bruria Shalmon; Izhar Hardan; Raphael Catane; Eran Segal; Gal Markel; Sara Apter; Alon Ben Nun; Iryna Kuchuk; Avichai Shimoni; Arnon Nagler; Jacob Schachter

Adoptive cell therapy with autologous tumor-infiltrating lymphocytes (TIL) and high-dose interleukin-2 (IL-2), after nonmyeloablative chemotherapy, has been shown to result in tumor regression in half of refractory metastatic melanoma patients. In the present study, we describe 2 separate clinical protocols. Twelve patients were treated with “Selected”-TIL, as previously reported and 8 patients with the modified version of “Young”-TIL. Selected-TIL protocol required the establishment of multiple T-cell cultures from 1 patient and in vitro selection of cultures secreting interferon-γ upon antigenic stimulation. In contrast, Young-TIL are minimally cultured T cells with superior in vitro features that do not require further selection. Two of 12 Selected-TIL patients experienced objective clinical responses (1 complete response, 1 partial response). Out of 8 treated Young-TIL patients, 1 experienced complete response, 2 partial response, and 4 patients had disease stabilization. Twenty-one of 33 enrolled Selected-TIL patients were excluded from the protocol, mainly as cultures failed the interferon-γ selection criteria or due to clinical deterioration, compared with only 3 Young-TIL patients. Expected bone marrow suppression and high-dose IL-2 toxicity were transient. There was no treatment-related mortality. This study vindicates the feasibility and effectiveness of TIL technology and calls for further efforts to implement and enhance this modality. The use of minimally cultured, unselected Young-TIL enables the treatment of most enrolled patients. Although the cohort of Young-TIL patients treated so far is rather small and the follow-up short, the response rate is encouraging.


Journal of Immunotherapy | 2011

Establishment and large-scale expansion of minimally cultured young tumor infiltrating lymphocytes for adoptive transfer therapy

Orit Itzhaki; Einat Hovav; Yaara Ziporen; Daphna Levy; Adva Kubi; Dragoslav Zikich; Liat Hershkovitz; Avraham J. Treves; Bruria Shalmon; Douglas Zippel; Gal Markel; Ronnie Shapira-Frommer; Jacob Schachter; Michal J. Besser

Treatment of metastatic melanoma patients with adoptively transferred tumor infiltrating lymphocytes (TIL) has developed into an effective therapy. Various studies reported objective responses of 50% and more. The use of unselected, minimally cultured, bulk TIL (Young-TIL) has simplified the TIL production process and may therefore, allow the accessibility of this approach to cancer centers worldwide. This article describes the precise process leading to the large-scale production of Young-TIL for therapy. We have enrolled 55 melanoma patients and optimized their Young-TIL generation process. Young-TIL cultures were successfully established for 51 of 55 (93%) patients in 16.7±5.5 days. In a large-scale expansion procedure Young-TIL of 32 patients were further expanded to treatment levels, resulting in a final number of 4.5×1010 ±2.0×1010 TIL. Fifteen of 31 (48%) patients, who were evaluated, achieved a clinical response, including 4 complete and 11 partial responses. We confirmed the significant correlation between short culture duration, high number of infused cells, and tumor regression. A high percentage of CD8+ T cells in the infusion product was beneficial to achieve an objective response. All responding patients were treated with Young-TIL cultures established in <20 days. In summary, we describe here an efficient and reliable method to generate Young-TIL for adoptive transfer therapy, which may easily be adopted by other cancer centers and can lead to objective responses in 50% of refractory melanoma patients. In the future this approach may be used also in other types of malignancies.


PLOS ONE | 2011

Regulation of cancer aggressive features in melanoma cells by microRNAs

Eyal Greenberg; Liat Hershkovitz; Orit Itzhaki; Steven Hajdu; Yael Nemlich; Rona Ortenberg; Nir Gefen; Liat Edry; Shira Modai; Yona Keisari; Michal J. Besser; Jacob Schachter; Noam Shomron; Gal Markel

MicroRNAs (miRNAs) are small non-coding RNAs with regulatory roles, which are involved in a broad spectrum of physiological and pathological processes, including cancer. A common strategy for identification of miRNAs involved in cell transformation is to compare malignant cells to normal cells. Here we focus on identification of miRNAs that regulate the aggressive phenotype of melanoma cells. To avoid differences due to genetic background, a comparative high-throughput miRNA profiling was performed on two isogenic human melanoma cell lines that display major differences in their net proliferation, invasion and tube formation activities. This screening revealed two major cohorts of differentially expressed miRNAs. We speculated that miRNAs up-regulated in the more-aggressive cell line contribute oncogenic features, while the down-regulated miRNAs are tumor suppressive. This assumption was further tested experimentally on five candidate tumor suppressive miRNAs (miR-31, -34a, -184, -185 and -204) and on one candidate oncogenic miRNA (miR-17-5p), all of which have never been reported before in cutaneous melanoma. Remarkably, all candidate Suppressive-miRNAs inhibited net proliferation, invasion or tube formation, while miR-17-5p enhanced cell proliferation. miR-34a and miR-185 were further shown to inhibit the growth of melanoma xenografts when implanted in SCID-NOD mice. Finally, all six candidate miRNAs were detected in 15 different metastatic melanoma specimens, attesting for the physiological relevance of our findings. Collectively, these findings may prove instrumental for understanding mechanisms of disease and for development of novel therapeutic and staging technologies for melanoma.


Biomarkers | 2013

A comparative analysis of total serum miRNA profiles identifies novel signature that is highly indicative of metastatic melanoma: a pilot study

Eyal Greenberg; Michal J. Besser; Eytan Ben-Ami; Ronnie Shapira-Frommer; Orit Itzhaki; Dragoslav Zikich; Daphna Levy; Adva Kubi; Eran Eyal; Amir Onn; Yehudit Cohen; Iris Barshack; Jacob Schachter; Gal Markel

Abstract Context: Quantification of circulating microRNAs (miRNAs) has recently become feasible and reliable, with most efforts focusing on miRNAs overexpressed by cancer cells. Objective: Identification of a characteristic circulating miRNAs profile in melanoma patients. Methods: We conducted a pilot study comprised of unbiased qPCR comparison of serum miRNA profiles between metastatic melanoma patients and healthy donors. Results: Loss of two normal serum-miRNAs, miR-29c and miR-324-3p, is highly indicative of metastatic melanoma. Hierarchical clustering analysis supported the results and clearly distinguished melanoma patients from healthy donors, metastatic colon and renal cancer patients. Discussion and conclusions: This approach is independent of tumor heterogeneity and is expected to have superior biomarker performances.


Mechanisms of Ageing and Development | 2003

Ageing-apoptosis relation in murine spleen

Orit Itzhaki; Ehud Skutelsky; Tatiana Kaptzan; Judith Sinai; Moshe Michowitz; Monica Huszar; Judith Leibovici

Relatively few studies have been published with regard to modification of apoptosis in normal tissues as a function of ageing. The majority of these studies demonstrated an increase in programmed cell death (PCD) with age. However, opposite results, namely loss of apoptotic control with age, have also been reported. In the present study, we examined proliferation and apoptotic cell death in spleens of C57/BL mice of different ages. A tendency towards decrease in cell proliferative capacity was seen with age. By contrast, apoptosis was increased in spleens from aged animals. Moreover, the proliferative cell/apoptotic cell ratio decreased in function of age. Ladder type DNA degradation was much more pronounced in DNA derived from splenocytes of old mice. These results were supported by a decrease of Bcl-2 and an increase in Fas receptor expression as well as by increased activation of caspases 8, 3 and 9 in splenocytes from aged animals. In addition, cell surface molecular markers recognizable by macrophages in apoptotic cells, namely decreased sialic acid concomitant with increased unmasking of galactose residues, were more pronounced on splenocytes from old mice than on those from young animals. In addition to the experimental evidence which supports a role of apoptotic cell death in ageing, a series of theoretical reasoning, which could also favor this possibility, are discussed.


PLOS ONE | 2013

Nicotinamide Inhibits Vasculogenic Mimicry, an Alternative Vascularization Pathway Observed in Highly Aggressive Melanoma

Orit Itzhaki; Eyal Greenberg; Bruria Shalmon; Adva Kubi; Avraham J. Treves; Ronnie Shapira-Frommer; Camilla Avivi; Rona Ortenberg; Eytan Ben-Ami; Jacob Schachter; Michal J. Besser; Gal Markel

Vasculogenic mimicry (VM) describes functional vascular channels composed only of tumor cells and its presence predicts poor prognosis in melanoma patients. Inhibition of this alternative vascularization pathway might be of clinical importance, especially as several anti-angiogenic therapies targeting endothelial cells are largely ineffective in melanoma. We show the presence of VM structures histologically in a series of human melanoma lesions and demonstrate that cell cultures derived from these lesions form tubes in 3D cultures ex vivo. We tested the ability of nicotinamide, the amide form of vitamin B3 (niacin), which acts as an epigenetic gene regulator through unique cellular pathways, to modify VM. Nicotinamide effectively inhibited the formation of VM structures and destroyed already formed ones, in a dose-dependent manner. Remarkably, VM formation capacity remained suppressed even one month after the complete withdrawal of Nicotimamid. The inhibitory effect of nicotinamide on VM formation could be at least partially explained by a nicotinamide-driven downregulation of vascular endothelial cadherin (VE-Cadherin), which is known to have a central role in VM. Further major changes in the expression profile of hundreds of genes, most of them clustered in biologically-relevant clusters, were observed. In addition, nicotinamide significantly inhibited melanoma cell proliferation, but had an opposite effect on their invasion capacity. Cell cycle analysis indicated moderate changes in apoptotic indices. Therefore, nicotinamide could be further used to unravel new biological mechanisms that drive VM and tumor progression. Targeting VM, especially in combination with anti-angiogenic strategies, is expected to be synergistic and might yield substantial anti neoplastic effects in a variety of malignancies.


Immunotherapy | 2013

Adoptive T-cell transfer in melanoma

Orit Itzhaki; Daphna Levy; Dragoslav Zikich; Avraham J. Treves; Gal Markel; Jacob Schachter; Michal J. Besser

Immunotherapy holds a highly promising treatment approach for metastatic melanoma patients. Adoptive cell transfer (ACT) involves the ex vivo expansion of autologous antitumor reactive lymphocytes and their reinfusion into lymphodepleted patients, accompanied by IL-2 administration. ACT with tumor-infiltrating T lymphocytes demonstrates objective clinical responses in 50-72% of the patients, including 10-40% complete responses and was shown to produce durable disease control with long progression-free survival. Tumor-infiltrating T-lymphocyte ACT might even have curative potential as the vast majority of the complete responders are without any evidence of disease many years after treatment. Other adoptive transfer studies employ the genetic modification of T lymphocytes with genes encoding tumor-specific T cell receptors or antibody-based chimeric antigen receptors. These approaches opened numerous possibilities to treat cancers other than melanoma. In this article we will summarize the ACT strategies in melanoma, the new developments in this field and combinations with other therapies.

Collaboration


Dive into the Orit Itzhaki's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge