Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Avraham Yaron is active.

Publication


Featured researches published by Avraham Yaron.


Nature | 1998

Identification of the receptor component of the IκBα-ubiquitin ligase

Avraham Yaron; Ada Hatzubai; Matti Davis; Iris Lavon; Sharon Amit; Anthony M. Manning; Jens S. Andersen; Matthias Mann; Frank Mercurio; Yinon Ben-Neriah

NF-κB, a ubiquitous, inducible transcription factor involved in immune, inflammatory, stress and developmental processes, is retained in a latent form in the cytoplasm of non-stimulated cells by inhibitory molecules, IκBs. Its activation is a paradigm for a signal-transduction cascade that integrates an inducible kinase and the ubiquitin–proteasome system to eliminate inhibitory regulators. Here we isolate the pIκBα–ubiquitin ligase (pIκBα-E3) that attaches ubiquitin, a small protein which marks other proteins for degradation by the proteasome system, to the phosphorylated NF-κB inhibitor pIκBα. Taking advantage of its high affinity to pIκBα, we isolate this ligase from HeLa cells by single-step immunoaffinity purification. Using nanoelectrospray mass spectrometry, we identify the specific component of the ligase that recognizes the pIκBα degradation motif as an F-box/WD-domainprotein belonging to a recently distinguished family of β-TrCP/Slimb proteins. This component, which we denote E3RSIκB (pIκBα-E3 receptor subunit), binds specifically to pIκBα and promotes its in vitro ubiquitination in the presence of two other ubiquitin-system enzymes, E1 and UBC5C, one of many known E2 enzymes. An F-box-deletion mutant of E3RSIκB, which tightly binds pIκBα but does not support its ubiquitination, acts in vivo as a dominant-negative molecule, inhibiting the degradation of pIκBα and consequently NF-κB activation. E3RSIκB represents a family of receptor proteins that are core components of a class of ubiquitin ligases. When these receptor components recognize their specific ligand, which is a conserved, phosphorylation-based sequence motif, they target regulatory proteins containing this motif for proteasomal degradation.


Nature | 1998

Identification of the receptor component of the IkappaBalpha-ubiquitin ligase.

Avraham Yaron; Ada Hatzubai; Matti Davis; Iris Lavon; Sharon Amit; Anthony M. Manning; Jens S. Andersen; Matthias Mann; Frank Mercurio; Yinon Ben-Neriah

NF-κB, a ubiquitous, inducible transcription factor involved in immune, inflammatory, stress and developmental processes, is retained in a latent form in the cytoplasm of non-stimulated cells by inhibitory molecules, IκBs. Its activation is a paradigm for a signal-transduction cascade that integrates an inducible kinase and the ubiquitin–proteasome system to eliminate inhibitory regulators. Here we isolate the pIκBα–ubiquitin ligase (pIκBα-E3) that attaches ubiquitin, a small protein which marks other proteins for degradation by the proteasome system, to the phosphorylated NF-κB inhibitor pIκBα. Taking advantage of its high affinity to pIκBα, we isolate this ligase from HeLa cells by single-step immunoaffinity purification. Using nanoelectrospray mass spectrometry, we identify the specific component of the ligase that recognizes the pIκBα degradation motif as an F-box/WD-domainprotein belonging to a recently distinguished family of β-TrCP/Slimb proteins. This component, which we denote E3RSIκB (pIκBα-E3 receptor subunit), binds specifically to pIκBα and promotes its in vitro ubiquitination in the presence of two other ubiquitin-system enzymes, E1 and UBC5C, one of many known E2 enzymes. An F-box-deletion mutant of E3RSIκB, which tightly binds pIκBα but does not support its ubiquitination, acts in vivo as a dominant-negative molecule, inhibiting the degradation of pIκBα and consequently NF-κB activation. E3RSIκB represents a family of receptor proteins that are core components of a class of ubiquitin ligases. When these receptor components recognize their specific ligand, which is a conserved, phosphorylation-based sequence motif, they target regulatory proteins containing this motif for proteasomal degradation.


The EMBO Journal | 1997

Inhibition of NF‐κB cellular function via specific targeting of the IκB‐ubiquitin ligase

Avraham Yaron; Hedva Gonen; Irit Alkalay; Ada Hatzubai; Steffen Jung; Shaul Beyth; Frank Mercurio; Anthony M. Manning; Aaron Ciechanover; Yinon Ben-Neriah

Activation of the transcription factor NF‐κB is a paradigm for signal transduction through the ubiquitin–proteasome pathway: ubiquitin‐dependent degradation of the transcriptional inhibitor IκB in response to cell stimulation. A major issue in this context is the nature of the recognition signal and the targeting enzyme involved in the proteolytic process. Here we show that following a stimulus‐dependent phosphorylation, and while associated with NF‐κB, IκB is targeted by a specific ubiquitin‐ligase via direct recognition of the signal‐dependent phosphorylation site; phosphopeptides corresponding to this site specifically inhibit ubiquitin conjugation of IκB and its subsequent degradation. The ligase recognition signal is functionally conserved between IκBα and IκBβ, and does not involve the nearby ubiquitination site. Microinjection of the inhibitory peptides into stimulated cells abolished NF‐κB activation in response to TNFα and the consequent expression of E‐selectin, an NF‐κB‐dependent cell‐adhesion molecule. Inhibition of NF‐κB function by specific blocking of ubiquitin ligase activity provides a novel approach for intervening in cellular processes via regulation of unique proteolytic events.


Molecular and Cellular Biology | 1995

In vivo stimulation of I kappa B phosphorylation is not sufficient to activate NF-kappa B.

Irit Alkalay; Avraham Yaron; Ada Hatzubai; Steffen Jung; Ayelet Avraham; O Gerlitz; I Pashut-Lavon; Yinon Ben-Neriah

NF-kappa B is a major inducible transcription factor in many immune and inflammatory reactions. Its activation involves the dissociation of the inhibitory subunit I kappa B from cytoplasmic NF-kappa B/Rel complexes, following which the Rel proteins are translocated to the nucleus, where they bind to DNA and activate transcription. Phosphorylation of I kappa B in cell-free experiments results in its inactivation and release from the Rel complex, but in vivo NF-kappa B activation is associated with I kappa B degradation. In vivo phosphorylation of I kappa B alpha was demonstrated in several recent studies, but its role is unknown. Our study shows that the T-cell activation results in rapid phosphorylation of I kappa B alpha and that this event is a physiological one, dependent on appropriate lymphocyte costimulation. Inducible I kappa B alpha phosphorylation was abolished by several distinct NF-kappa B blocking reagents, suggesting that it plays an essential role in the activation process. However, the in vivo induction of I kappa B alpha phosphorylation did not cause the inhibitory subunit to dissociate from the Rel complex. We identified several protease inhibitors which allow phosphorylation of I kappa B alpha but prevent its degradation upon cell stimulation, presumably through inhibition of the cytoplasmic proteasome. In the presence of these inhibitors, phosphorylated I kappa B alpha remained bound to the Rel complex in the cytoplasm for an extended period of time, whereas NF-kappa B activation was abolished. It appears that activation of NF-kappa B requires degradation of I kappa B alpha while it is a part of the Rel cytoplasmic complex, with inducible phosphorylation of the inhibitory subunit influencing the rate of degradation.


Annals of the New York Academy of Sciences | 1995

Costimulation Requirement for AP‐1 and NF‐κB Transcription Factor Activation in T Cells

Steffen Jung; Avraham Yaron; Irit Alkalay; Ada Hatzubai; Ayelet Avraham; Yinon Ben-Neriah

The transcriptional activity of the IL-2 promoter requires T-cell costimulation delivered by the TCR and the auxiliary receptor CD28. Several transcription factors participate in IL-2 promoter activation, among which are AP-1-like factors and NF-kappa B. Protein phosphorylation has an important role in the regulation of these two factors: (1) it induces the transactivating capacity of the AP-1 protein c-Jun; and (2) it is involved in the release of the cytoplasmic inhibitor, I kappa B, from NF-kappa B, allowing translocation of the latter into the nucleus. We have recently shown that both phosphorylation processes require T-cell costimulation. Furthermore, in activated T cells, the kinetics of the two phosphorylation events are essentially similar. According to our results, however, the kinases responsible for the two processes are distinct entities. Whereas TPCK inhibits phosphorylation of I kappa B and, consequently, activation of NF-kappa B, it markedly enhances the activity of JNK, the MAP kinase-related kinase that phosphorylates the transactivation domain of c-Jun. We, therefore, propose the activation scheme presented in FIGURE 3 for T-cell costimulation. Costimulation results in the activation of a signaling pathway that leads to the simultaneous induction of the two transcription factors, AP-1 and NF-kappa B. Integration of the signals generated by TCR and CD28 engagement occurs along this pathway, which then bifurcates to induce I kappa B phosphorylation and NF-kappa B activation on the one hand, and JNK activation and c-Jun phosphorylation on the other. We are currently engaged in defining where the two signals integrate along the AP-1/NF-kappa B pathway.


Journal of Neurochemistry | 2002

Site-Directed Mutagenesis of Active Site Residues Reveals Plasticity of Human Butyrylcholinesterase in Substrate and Inhibitor Interactions

Averell Gnatt; Yael Loewenstein; Avraham Yaron; Mikael Schwarz; Hermona Soreq

Abstract: In search of the molecular mechanisms underlying the broad substrate and inhibitor specificities of butyrylcholinesterase (BuChE), we employed site‐directed mutagenesis to modify the catalytic triad residue Ser198, the acyl pocket Leu286 and adjacent Phe329 residues, and Met437 and Tyr440 located near the choline binding site. Mutant proteins were produced in microinjected Xenopus oocytes, and Km values towards butyrylthiocholine and IC50 values for the organophosphates diisopropylfluorophosphonate (DFP), diethoxyphosphinylthiocholine iodide (echothiophate), and tetraisopropylpyrophosphoramide (iso‐OMPA) were determined. Substitution of Ser198 by cysteine and Met437 by aspartate nearly abolished activity, and other mutations of Ser198 completely abolished it. Tyr440 and Leu286 mutants remained active, but with higher Km and IC50 values. Rates of inhibition by DFP were roughly parallel to IC50 values for several Leu286 mutants. Both Km and IC50 values increased for Leu286 mutants in the order Asp < Gln < Lys. In contrast, cysteine, leucine, and glutamine mutants of Phe329 displayed unmodified Km values toward butyrylthiocholine, but up to 10‐fold decreased IC50 values for DFP, iso‐OMPA, and echothiophate. These findings add Tyr440 and Phe329 to the list of residues interacting with substrate and ligands, demonstrate plasticity in the active site region of BuChE, and foreshadow the design of recombinant BuChEs with tailored scavenging properties.


Brain Research | 1994

Cholinotoxic effects on acetylcholinesterase gene expression are associated with brain-region specific alterations in G,C-rich transcripts

Efrat Lev-Lehman; Ahmed El-Tamer; Avraham Yaron; Mirta Grifman; Dalia Ginzberg; Israel Hanin; Hermona Soreq

To study the mechanisms underlying cholinotoxic brain damage, we examined ethylcholine aziridinium (AF64A) effects on cholinesterase genes. In vitro, AF64A hardly affected cholinesterase activities yet inhibited transcription of the G,C-rich AChE DNA encoding acetylcholinesterase (AChE) more than the A,T-rich butyrylcholinesterase (BChE) DNA. In vivo, intracerebroventricular injection of 2 nmol of AF64A decreased AChE mRNA in striatum and septum by 3- and 25-fold by day 7, with no change in BChE mRNA or AChE activity. In contrast, hippocampal AChE mRNA increased 10-fold by day 7 and BChE mRNA and AChE activity decreased 2-fold. By day 60 post-treatment, both AChE mRNA and AChE levels returned to normal in all regions except hippocampus, where AChE activity and BChE mRNA were decreased by 2-fold. Moreover, differential PCR displays revealed persistent induction, specific to the hippocampus of treated rats, of several unidentified G,C-rich transcripts, suggesting particular responsiveness of hippocampal G,C-rich genes to cholinotoxicity.


Archive | 1998

Compositions and methods for modulating cellular NF-κB activation

Irit Alkalay; Yinon Ben-Neriah; Aaron Ciechanover; Anthony Manning; Frank Mercurio; Avraham Yaron


Archive | 1995

In Vivo Stimulation of IkB Phosphorylation Is Not Sufficient To Activate NF-kB

Irit Alkalay; Avraham Yaron; Ada Hatzubai; Steffen Jung; Ayelet Avraham; Ofer Gerlitz; Iris Pashut-Lavon; Andyinon Ben-Neriah


Archive | 2001

Methods for identifying inhibitors of ubiquitin-mediated proteolysis of ikb

Yinon Ben-Neriah; Irit Alkalay; Ada Hatzubai; Etti Ben-Shushan; Matti Davis; Avraham Yaron

Collaboration


Dive into the Avraham Yaron's collaboration.

Top Co-Authors

Avatar

Yinon Ben-Neriah

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Ada Hatzubai

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Matti Davis

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Irit Alkalay

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Iris Lavon

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Sharon Amit

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Steffen Jung

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Ayelet Avraham

Hebrew University of Jerusalem

View shared research outputs
Researchain Logo
Decentralizing Knowledge