Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Irit Alkalay is active.

Publication


Featured researches published by Irit Alkalay.


Nature Cell Biology | 2006

Maintenance of colonic homeostasis by distinctive apical TLR9 signalling in intestinal epithelial cells

Jongdae Lee; Ji-Hun Mo; Kyoko Katakura; Irit Alkalay; Adam N. Rucker; Yu-Tsueng Liu; Hyun-Ku Lee; Carol Shen; Gady Cojocaru; Steve Shenouda; Martin F. Kagnoff; Lars Eckmann; Yinon Ben-Neriah; Eyal Raz

The mechanisms by which commensal bacteria suppress inflammatory signalling in the gut are still unclear. Here, we present a cellular mechanism whereby the polarity of intestinal epithelial cells (IECs) has a major role in colonic homeostasis. TLR9 activation through apical and basolateral surface domains have distinct transcriptional responses, evident by NF-κB activation and cDNA microarray analysis. Whereas basolateral TLR9 signals IκBα degradation and activation of the NF-κB pathway, apical TLR9 stimulation invokes a unique response in which ubiquitinated IκB accumulates in the cytoplasm preventing NF-κB activation. Furthermore, apical TLR9 stimulation confers intracellular tolerance to subsequent TLR challenges. IECs in TLR9-deficient mice, when compared with wild-type and TLR2-deficient mice, display a lower NF-κB activation threshold and these mice are highly susceptible to experimental colitis. Our data provide a case for organ-specific innate immunity in which TLR expression in polarized IECs has uniquely evolved to maintain colonic homeostasis and regulate tolerance and inflammation.


The EMBO Journal | 1997

Inhibition of NF‐κB cellular function via specific targeting of the IκB‐ubiquitin ligase

Avraham Yaron; Hedva Gonen; Irit Alkalay; Ada Hatzubai; Steffen Jung; Shaul Beyth; Frank Mercurio; Anthony M. Manning; Aaron Ciechanover; Yinon Ben-Neriah

Activation of the transcription factor NF‐κB is a paradigm for signal transduction through the ubiquitin–proteasome pathway: ubiquitin‐dependent degradation of the transcriptional inhibitor IκB in response to cell stimulation. A major issue in this context is the nature of the recognition signal and the targeting enzyme involved in the proteolytic process. Here we show that following a stimulus‐dependent phosphorylation, and while associated with NF‐κB, IκB is targeted by a specific ubiquitin‐ligase via direct recognition of the signal‐dependent phosphorylation site; phosphopeptides corresponding to this site specifically inhibit ubiquitin conjugation of IκB and its subsequent degradation. The ligase recognition signal is functionally conserved between IκBα and IκBβ, and does not involve the nearby ubiquitination site. Microinjection of the inhibitory peptides into stimulated cells abolished NF‐κB activation in response to TNFα and the consequent expression of E‐selectin, an NF‐κB‐dependent cell‐adhesion molecule. Inhibition of NF‐κB function by specific blocking of ubiquitin ligase activity provides a novel approach for intervening in cellular processes via regulation of unique proteolytic events.


Cell | 1991

Redox regulation of a protein tyrosine kinase in the endoplasmic reticulum

Asne R. Bauskin; Irit Alkalay; Yinon Ben-Neriah

The subcellular localization of the mouse Ltk transmembrane protein tyrosine kinase was studied in transfected COS cells, a mature B lymphocyte line, and a low expressing transfected lymphocyte clone. Indirect immunofluorescence and immunogold staining of COS transfectants and endoglycosidase analysis of both COS transfectants and lymphocytes indicate the unusual localization of Ltk to the endoplasmic reticulum (ER). Ltk resembles a receptor tyrosine kinase; it has a short, glycosylated, and cysteine-rich N-terminal domain. Yet, it appears to function in a ligand-independent mechanism: its in vivo catalytic activity is markedly enhanced by alkylating and thiol-oxidizing agents, and the active fraction of the protein occurs as disulfide-linked multimers. The catalytic activity of Ltk in the ER may be regulated via changes in the cellular redox potential, a novel mechanism for regulating protein tyrosine kinases. The ability to respond to redox changes in the cell may, however, be shared with certain receptor kinases during their passage through the ER.


Molecular and Cellular Biology | 1995

In vivo stimulation of I kappa B phosphorylation is not sufficient to activate NF-kappa B.

Irit Alkalay; Avraham Yaron; Ada Hatzubai; Steffen Jung; Ayelet Avraham; O Gerlitz; I Pashut-Lavon; Yinon Ben-Neriah

NF-kappa B is a major inducible transcription factor in many immune and inflammatory reactions. Its activation involves the dissociation of the inhibitory subunit I kappa B from cytoplasmic NF-kappa B/Rel complexes, following which the Rel proteins are translocated to the nucleus, where they bind to DNA and activate transcription. Phosphorylation of I kappa B in cell-free experiments results in its inactivation and release from the Rel complex, but in vivo NF-kappa B activation is associated with I kappa B degradation. In vivo phosphorylation of I kappa B alpha was demonstrated in several recent studies, but its role is unknown. Our study shows that the T-cell activation results in rapid phosphorylation of I kappa B alpha and that this event is a physiological one, dependent on appropriate lymphocyte costimulation. Inducible I kappa B alpha phosphorylation was abolished by several distinct NF-kappa B blocking reagents, suggesting that it plays an essential role in the activation process. However, the in vivo induction of I kappa B alpha phosphorylation did not cause the inhibitory subunit to dissociate from the Rel complex. We identified several protease inhibitors which allow phosphorylation of I kappa B alpha but prevent its degradation upon cell stimulation, presumably through inhibition of the cytoplasmic proteasome. In the presence of these inhibitors, phosphorylated I kappa B alpha remained bound to the Rel complex in the cytoplasm for an extended period of time, whereas NF-kappa B activation was abolished. It appears that activation of NF-kappa B requires degradation of I kappa B alpha while it is a part of the Rel cytoplasmic complex, with inducible phosphorylation of the inhibitory subunit influencing the rate of degradation.


PLOS Pathogens | 2010

The Type III Secretion Effector NleE Inhibits NF-κB Activation

Chen Nadler; Kobi Baruch; Simi Kobi; Erez Mills; Gili Haviv; Marganit Farago; Irit Alkalay; Sina Bartfeld; Thomas F. Meyer; Yinon Ben-Neriah; Ilan Rosenshine

The complex host-pathogen interplay involves the recognition of the pathogen by the hosts innate immune system and countermeasures taken by the pathogen. Detection of invading bacteria by the host leads to rapid activation of the transcription factor NF-kappaB, followed by inflammation and eradication of the intruders. In response, some pathogens, including enteropathogenic Escherichia coli (EPEC), acquired means of blocking NF-kappaB activation. We show that inhibition of NF-kappaB activation by EPEC involves the injection of NleE into the host cell. Importantly, we show that NleE inhibits NF-kappaB activation by preventing activation of IKKbeta and consequently the degradation of the NF-kappaB inhibitor, IkappaB. This NleE activity is enhanced by, but is not dependent on, a second injected effector, NleB. In conclusion, this study describes two effectors, NleB and NleE, with no similarity to other known proteins, used by pathogens to manipulate NF-kappaB signaling pathways.


Nature Immunology | 2011

Epithelial microRNAs regulate gut mucosal immunity via epithelium-T cell crosstalk

Moshe Biton; Avi Levin; Michal Slyper; Irit Alkalay; Elad Horwitz; Hagar Mor; Sharon Kredo-Russo; Tali Avnit-Sagi; Gady Cojocaru; Farid Zreik; Zvi Bentwich; Matthew N. Poy; David Artis; Michael D. Walker; Eran Hornstein; Eli Pikarsky; Yinon Ben-Neriah

Colonic homeostasis entails epithelium-lymphocyte cooperation, yet many participants in this process are unknown. We show here that epithelial microRNAs mediate the mucosa–immune system crosstalk necessary for mounting protective T helper type 2 (TH2) responses. Abolishing the induction of microRNA by gut-specific deletion of Dicer1 (Dicer1Δgut), which encodes an enzyme involved in microRNA biogenesis, deprived goblet cells of RELMβ, a key TH2 antiparasitic cytokine; this predisposed the host to parasite infection. Infection of Dicer1Δgut mice with helminths favored a futile TH1 response with hallmarks of inflammatory bowel disease. Interleukin 13 (IL-13) induced the microRNA miR-375, which regulates the expression of TSLP, a TH2-facilitating epithelial cytokine; this indicated a TH2-amplification loop. We found that miR-375 was required for RELMβ expression in vivo; miR-375-deficient mice had significantly less intestinal RELMβ, which possibly explains the greater susceptibility of Dicer1Δgut mice to parasites. Our findings indicate that epithelial microRNAs are key regulators of gut homeostasis and mucosal immunity.


The EMBO Journal | 2010

Oct‐3/4 regulates stem cell identity and cell fate decisions by modulating Wnt/β‐catenin signalling

Monther Abu-Remaileh; Ariela Gerson; Marganit Farago; Gili Nathan; Irit Alkalay; Sharon Zins Rousso; Michal Gur; Abraham Fainsod; Yehudit Bergman

Although the transcriptional regulatory events triggered by Oct‐3/4 are well documented, understanding the proteomic networks that mediate the diverse functions of this POU domain homeobox protein remains a major challenge. Here, we present genetic and biochemical studies that suggest an unexpected novel strategy for Oct‐3/4‐dependent regulation of embryogenesis and cell lineage determination. Our data suggest that Oct‐3/4 specifically interacts with nuclear β‐catenin and facilitates its proteasomal degradation, resulting in the maintenance of an undifferentiated, early embryonic phenotype both in Xenopus embryos and embryonic stem (ES) cells. Our data also show that Oct‐3/4‐mediated control of β‐catenin stability has an important function in regulating ES cell motility. Down‐regulation of Oct‐3/4 increases β‐catenin protein levels, enhancing Wnt signalling and initiating invasive cellular activity characteristic of epithelial‐mesenchymal transition. Our data suggest a novel mode of regulation by which a delicate balance between β‐catenin, Tcf3 and Oct‐3/4 regulates maintenance of stem cell identity. Altering the balance between these proteins can direct cell fate decisions and differentiation.


Annals of the New York Academy of Sciences | 1995

Costimulation Requirement for AP‐1 and NF‐κB Transcription Factor Activation in T Cells

Steffen Jung; Avraham Yaron; Irit Alkalay; Ada Hatzubai; Ayelet Avraham; Yinon Ben-Neriah

The transcriptional activity of the IL-2 promoter requires T-cell costimulation delivered by the TCR and the auxiliary receptor CD28. Several transcription factors participate in IL-2 promoter activation, among which are AP-1-like factors and NF-kappa B. Protein phosphorylation has an important role in the regulation of these two factors: (1) it induces the transactivating capacity of the AP-1 protein c-Jun; and (2) it is involved in the release of the cytoplasmic inhibitor, I kappa B, from NF-kappa B, allowing translocation of the latter into the nucleus. We have recently shown that both phosphorylation processes require T-cell costimulation. Furthermore, in activated T cells, the kinetics of the two phosphorylation events are essentially similar. According to our results, however, the kinases responsible for the two processes are distinct entities. Whereas TPCK inhibits phosphorylation of I kappa B and, consequently, activation of NF-kappa B, it markedly enhances the activity of JNK, the MAP kinase-related kinase that phosphorylates the transactivation domain of c-Jun. We, therefore, propose the activation scheme presented in FIGURE 3 for T-cell costimulation. Costimulation results in the activation of a signaling pathway that leads to the simultaneous induction of the two transcription factors, AP-1 and NF-kappa B. Integration of the signals generated by TCR and CD28 engagement occurs along this pathway, which then bifurcates to induce I kappa B phosphorylation and NF-kappa B activation on the one hand, and JNK activation and c-Jun phosphorylation on the other. We are currently engaged in defining where the two signals integrate along the AP-1/NF-kappa B pathway.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Critical role for IL-1β in DNA damage-induced mucositis

Naama Kanarek; Sergei I. Grivennikov; Michael Leshets; Audrey Lasry; Irit Alkalay; Elad Horwitz; Yoav D. Shaul; Matthew D. Stachler; Elena Voronov; Ron N. Apte; Michele Pagano; Eli Pikarsky; Michael Karin; Sankar Ghosh; Yinon Ben-Neriah

Significance Deletion of the E3 β-TrCP in the mouse gut epithelium deregulates enterocyte cell cycle, induces a DNA damage response (DDR), and abolishes the epithelium barrier function, resulting in a lethal mucosal inflammation. Epithelial-derived IL-1β, likely induced by DDR independently of NF-κB, is a major culprit, and initiates the pathology by compromising epithelial tight junctions (TJs). Anti–IL-1β treatment secures the TJs and prevents the fulminant mucosal inflammation. IL-1β secretion accompanies human mucositis, a severe mucosal inflammatory reaction caused by chemoradiation therapy-induced DNA damage, which often results in treatment suspension. We propose that anti–IL-1β preventive treatment may ameliorate mucositis, as well as multiple disorders associated with epithelial barrier permeability, including burn injuries, head and neck trauma, alcoholic intoxication, and graft-vs.-host disease. β-TrCP, the substrate recognition subunit of SCF-type ubiquitin ligases, is ubiquitously expressed from two distinct paralogs, targeting for degradation many regulatory proteins, among which is the NF-κB inhibitor IκB. To appreciate tissue-specific roles of β-TrCP, we studied the consequences of inducible ablation of three or all four alleles of the E3 in the mouse gut. The ablation resulted in mucositis, a destructive gut mucosal inflammation, which is a common complication of different cancer therapies and represents a major obstacle to successful chemoradiation therapy. We identified epithelial-derived IL-1β as the culprit of mucositis onset, inducing mucosal barrier breach. Surprisingly, epithelial IL-1β is induced by DNA damage via an NF-κB–independent mechanism. Tissue damage caused by gut barrier disruption is exacerbated in the absence of NF-κB, with failure to express the endogenous IL-1β receptor antagonist IL-1Ra upon four-allele loss. Antibody neutralization of IL-1β prevents epithelial tight junction dysfunction and alleviates mucositis in β-TrCP–deficient mice. IL-1β antagonists should thus be considered for prevention and treatment of severe morbidity associated with mucositis.


Nature | 1993

Rapid proteolysis of IκB-α is necessary for activation of transcription factor NF-κB

Thomas Henkel; Thomas Machleidt; Irit Alkalay; Martin Krönke; Yinon Ben-Neriah; Patrick A. Baeuerle

Collaboration


Dive into the Irit Alkalay's collaboration.

Top Co-Authors

Avatar

Yinon Ben-Neriah

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Ada Hatzubai

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Avraham Yaron

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Steffen Jung

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ayelet Avraham

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Asne R. Bauskin

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Elad Horwitz

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Eli Pikarsky

Hebrew University of Jerusalem

View shared research outputs
Researchain Logo
Decentralizing Knowledge