Avram J. Holmes
Yale University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Avram J. Holmes.
American Journal of Psychiatry | 2009
Diego A. Pizzagalli; Avram J. Holmes; Daniel G. Dillon; B.A. Elena L. Goetz; B.A. Jeffrey L. Birk; A.M. Ryan Bogdan; Darin D. Dougherty; Dan V. Iosifescu; Scott L. Rauch; Maurizio Fava
OBJECTIVE Major depressive disorder is characterized by impaired reward processing, possibly due to dysfunction in the basal ganglia. However, few neuroimaging studies of depression have distinguished between anticipatory and consummatory phases of reward processing. Using functional MRI (fMRI) and a task that dissociates anticipatory and consummatory phases of reward processing, the authors tested the hypothesis that individuals with major depression would show reduced reward-related responses in basal ganglia structures. METHOD A monetary incentive delay task was presented to 30 unmedicated individuals with major depressive disorder and 31 healthy comparison subjects during fMRI scanning. Whole-brain analyses focused on neural responses to reward-predicting cues and rewarding outcomes (i.e., monetary gains). Secondary analyses focused on the relationship between anhedonic symptoms and basal ganglia volumes. RESULTS Relative to comparison subjects, participants with major depression showed significantly weaker responses to gains in the left nucleus accumbens and the caudate bilaterally. Group differences in these regions were specific to rewarding outcomes and did not generalize to neutral or negative outcomes, although relatively reduced responses to monetary penalties in the major depression group emerged in other caudate regions. By contrast, evidence for group differences during reward anticipation was weaker, although participants with major depression showed reduced activation to reward cues in a small sector of the left posterior putamen. In the major depression group, anhedonic symptoms and depression severity were associated with reduced caudate volume bilaterally. CONCLUSIONS These results suggest that basal ganglia dysfunction in major depression may affect the consummatory phase of reward processing. Additionally, morphometric results suggest that anhedonia in major depression is related to caudate volume.
Nature Genetics | 2012
Jason L. Stein; Sarah E. Medland; A A Vasquez; Derrek P. Hibar; R. E. Senstad; Anderson M. Winkler; Roberto Toro; K Appel; R. Bartecek; Ørjan Bergmann; Manon Bernard; Andrew Anand Brown; Dara M. Cannon; M. Mallar Chakravarty; Andrea Christoforou; M. Domin; Oliver Grimm; Marisa Hollinshead; Avram J. Holmes; Georg Homuth; J.J. Hottenga; Camilla Langan; Lorna M. Lopez; Narelle K. Hansell; Kristy Hwang; Sungeun Kim; Gonzalo Laje; Phil H. Lee; Xinmin Liu; Eva Loth
Identifying genetic variants influencing human brain structures may reveal new biological mechanisms underlying cognition and neuropsychiatric illness. The volume of the hippocampus is a biomarker of incipient Alzheimers disease and is reduced in schizophrenia, major depression and mesial temporal lobe epilepsy. Whereas many brain imaging phenotypes are highly heritable, identifying and replicating genetic influences has been difficult, as small effects and the high costs of magnetic resonance imaging (MRI) have led to underpowered studies. Here we report genome-wide association meta-analyses and replication for mean bilateral hippocampal, total brain and intracranial volumes from a large multinational consortium. The intergenic variant rs7294919 was associated with hippocampal volume (12q24.22; N = 21,151; P = 6.70 × 10−16) and the expression levels of the positional candidate gene TESC in brain tissue. Additionally, rs10784502, located within HMGA2, was associated with intracranial volume (12q14.3; N = 15,782; P = 1.12 × 10−12). We also identified a suggestive association with total brain volume at rs10494373 within DDR2 (1q23.3; N = 6,500; P = 5.81 × 10−7).
Biological Psychiatry | 2010
Amy C. Janes; Diego A. Pizzagalli; Sarah Richardt; Blaise deB. Frederick; Sarah Chuzi; Gladys N. Pachas; Melissa A. Culhane; Avram J. Holmes; Maurizio Fava; A. Eden Evins; Marc J. Kaufman
BACKGROUND Developing the means to identify smokers at high risk for relapse could advance relapse prevention therapy. We hypothesized that functional magnetic resonance imaging (fMRI) reactivity to smoking-related cues, measured before a quit attempt, could identify smokers with heightened relapse vulnerability. METHODS Before quitting smoking, 21 nicotine-dependent women underwent fMRI during which smoking-related and neutral images were shown. These smokers also were tested for possible attentional biases to smoking-related words using a computerized emotional Stroop (ES) task previously found to predict relapse. Smokers then made a quit attempt and were grouped based on outcomes (abstinence vs. slip: smoking > or = 1 cigarette after attaining abstinence). Prequit fMRI and ES measurements in these groups were compared. RESULTS Slip subjects had heightened fMRI reactivity to smoking-related images in brain regions implicated in emotion, interoceptive awareness, and motor planning and execution. Insula and dorsal anterior cingulate cortex (dACC) reactivity induced by smoking images correlated with an attentional bias to smoking-related words. A discriminant analysis of ES and fMRI data predicted outcomes with 79% accuracy. Additionally, smokers who slipped had decreased fMRI functional connectivity between an insula-containing network and brain regions involved in cognitive control, including the dACC and dorsal lateral prefrontal cortex, possibly reflecting reduced top-down control of cue-induced emotions. CONCLUSIONS These findings suggest that the insula and dACC are important substrates of smoking relapse vulnerability. The data also suggest that relapse-vulnerable smokers can be identified before quit attempts, which could enable personalized treatment, improve tobacco-dependence treatment outcomes, and reduce smoking-related morbidity and mortality.
Archives of General Psychiatry | 2008
Avram J. Holmes; Diego A. Pizzagalli
CONTEXT Depression is characterized by executive dysfunctions and abnormal reactions to errors; however, little is known about the brain mechanisms that underlie these deficits. OBJECTIVE To examine whether abnormal reactions to errors in patients with major depressive disorder (MDD) are associated with exaggerated paralimbic activation and/or a failure to recruit subsequent cognitive control to account for mistakes in performance. DESIGN Between February 15, 2005, and January 19, 2006, we recorded 128-channel event-related potentials while study participants performed a Stroop task, modified to incorporate performance feedback. SETTING Patients with MDD and healthy comparison subjects were recruited from the general community. PARTICIPANTS Study participants were 20 unmedicated patients with MDD and 20 demographically matched comparison subjects. MAIN OUTCOME MEASURES The error-related negativity and error positivity were analyzed through scalp and source localization analyses. Functional connectivity analyses were conducted to investigate group differences in the spatiotemporal dynamics of brain mechanisms that underlie error processing. RESULTS Relative to comparison subjects, patients with MDD displayed significantly lower accuracy after incorrect responses, larger error-related negativity, and higher current density in the rostral anterior cingulate cortex (ACC) and medial prefrontal cortex (PFC) (Brodmann area 10/32) 80 milliseconds after committing an error. Functional connectivity analyses revealed that for the comparison subjects, but not the patients with MDD, rostral ACC and medial PFC activation 80 milliseconds after committing an error predicted left dorsolateral PFC (Brodmann area 8/9) activation 472 milliseconds after committing an error. CONCLUSIONS Unmedicated patients with MDD showed reduced accuracy and potentiated error-related negativity immediately after committing errors, highlighting dysfunctions in the automatic detection of unfavorable performance outcomes. New analytic procedures allowed us to show that abnormal reaction to committing errors was accompanied by hyperactivation in rostral ACC and medial PFC regions 80 milliseconds after committing errors and a failure to recruit dorsolateral PFC-based cognitive control. Future studies are warranted to investigate whether these dysfunctions might foster the emergence and maintenance of negative processing biases and thus increase vulnerability to depression.
Biological Psychiatry | 2009
Daniel G. Dillon; Avram J. Holmes; Jeffrey L. Birk; Nancy Hall Brooks; Karlen Lyons-Ruth; Diego A. Pizzagalli
BACKGROUND Childhood adversity increases the risk of psychopathology, but the neurobiological mechanisms underlying this vulnerability are not well-understood. In animal models, early adversity is associated with dysfunction in basal ganglia regions involved in reward processing, but this relationship has not been established in humans. METHODS Functional magnetic resonance imaging was used to examine basal ganglia responses to: 1) cues signaling possible monetary rewards and losses; and 2) delivery of monetary gains and penalties, in 13 young adults who experienced maltreatment before age 14 years and 31 nonmaltreated control subjects. RESULTS Relative to control subjects, individuals exposed to childhood adversity reported elevated symptoms of anhedonia and depression, rated reward cues less positively, and displayed a weaker response to reward cues in the left globus pallidus. There were no group differences in right hemisphere basal ganglia response to reward cues or in basal ganglia response to loss cues, no-incentive cues, gains, or penalties. CONCLUSIONS Results indicate that childhood adversity in humans is associated with blunted subjective responses to reward-predicting cues as well as dysfunction in left basal ganglia regions implicated in reward-related learning and motivation. This dysfunction might serve as a diathesis that contributes to the multiple negative outcomes and psychopathologies associated with childhood adversity. The findings suggest that interventions that target motivation and goal-directed action might be useful for reducing the negative consequences of childhood adversity.
JAMA Psychiatry | 2014
Justin T. Baker; Avram J. Holmes; Grace A. Masters; B. T. Thomas Yeo; Fenna M. Krienen; Randy L. Buckner; Dost Öngür
IMPORTANCE Psychotic disorders (including schizophrenia, schizoaffective disorder, and psychotic bipolar disorder) are devastating illnesses characterized by breakdown in the integration of information processing. Recent advances in neuroimaging allow for the estimation of brain networks on the basis of intrinsic functional connectivity, but the specific network abnormalities in psychotic disorders are poorly understood. OBJECTIVE To compare intrinsic functional connectivity across the cerebral cortex in patients with schizophrenia spectrum disorders or psychotic bipolar disorder and healthy controls. DESIGN, SETTING, AND PARTICIPANTS We studied 100 patients from an academic psychiatric hospital (28 patients with schizophrenia, 32 patients with schizoaffective disorder, and 40 patients with bipolar disorder with psychosis) and 100 healthy controls matched for age, sex, race, handedness, and scan quality from December 2009 to October 2011. MAIN OUTCOMES AND MEASURES Functional connectivity profiles across 122 regions that covered the entire cerebral cortex. RESULTS Relative to the healthy controls, individuals with a psychotic illness had disruption across several brain networks, with preferential reductions in functional connectivity within the frontoparietal control network (P < .05, corrected for family-wise error rate). This functionally defined network includes portions of the dorsolateral prefrontal cortex, posteromedial prefrontal cortex, lateral parietal cortex, and posterior temporal cortex. This effect was seen across diagnoses and persisted after matching patients and controls on the basis of scan quality. CONCLUSIONS AND RELEVANCE Our study results support the view that cortical information processing is disrupted in psychosis and provides new evidence that disruptions within the frontoparietal control network may be a shared feature across both schizophrenia and affective psychosis.
Scientific Data | 2014
Xi-Nian Zuo; Jeffrey S. Anderson; Pierre Bellec; Rasmus M Birn; Bharat B. Biswal; Janusch Blautzik; John C.S. Breitner; Randy L. Buckner; Vince D. Calhoun; F. Xavier Castellanos; Antao Chen; Bing Chen; Jiangtao Chen; Xu Chen; Stanley J. Colcombe; William Courtney; R. Cameron Craddock; Adriana Di Martino; Hao-Ming Dong; Xiaolan Fu; Qiyong Gong; Krzysztof J. Gorgolewski; Ying Han; Ye He; Yong He; Erica Ho; Avram J. Holmes; Xiao-Hui Hou; Jeremy Huckins; Tianzi Jiang
Efforts to identify meaningful functional imaging-based biomarkers are limited by the ability to reliably characterize inter-individual differences in human brain function. Although a growing number of connectomics-based measures are reported to have moderate to high test-retest reliability, the variability in data acquisition, experimental designs, and analytic methods precludes the ability to generalize results. The Consortium for Reliability and Reproducibility (CoRR) is working to address this challenge and establish test-retest reliability as a minimum standard for methods development in functional connectomics. Specifically, CoRR has aggregated 1,629 typical individuals’ resting state fMRI (rfMRI) data (5,093 rfMRI scans) from 18 international sites, and is openly sharing them via the International Data-sharing Neuroimaging Initiative (INDI). To allow researchers to generate various estimates of reliability and reproducibility, a variety of data acquisition procedures and experimental designs are included. Similarly, to enable users to assess the impact of commonly encountered artifacts (for example, motion) on characterizations of inter-individual variation, datasets of varying quality are included.
The Journal of Neuroscience | 2012
Avram J. Holmes; Phil H. Lee; Marisa Hollinshead; Leah Bakst; Joshua L. Roffman; Jordan W. Smoller; Randy L. Buckner
Individual differences in affective and social processes may arise from variability in amygdala-medial prefrontal (mPFC) circuitry and related genetic heterogeneity. To explore this possibility in humans, we examined the structural correlates of trait negative affect in a sample of 1050 healthy young adults with no history of psychiatric illness. Analyses revealed that heightened negative affect was associated with increased amygdala volume and reduced thickness in a left mPFC region encompassing the subgenual and rostral anterior cingulate cortex. The most extreme individuals displayed an inverse correlation between amygdala volume and mPFC thickness, suggesting that imbalance between these structures is linked to negative affect in the general population. Subgroups of participants were further evaluated on social (n = 206) and emotional (n = 533) functions. Individuals with decreased mPFC thickness exhibited the poorest social cognition and were least able to correctly identify facial emotion. Given prior links between disrupted amygdala–mPFC circuitry and the presence of major depressive disorder (MDD), we explored whether the individual differences in anatomy observed here in healthy young adults were associated with polygenic risk for MDD (n = 438) using risk scores derived from a large genome-wide association analysis (n = 18,759). Analyses revealed associations between increasing polygenic burden for MDD and reduced cortical thickness in the left mPFC. These collective findings suggest that, within the healthy population, there is significant variability in amygdala–mPFC circuitry that is associated with poor functioning across affective and social domains. Individual differences in this circuitry may arise, in part, from common genetic variability that contributes to risk for MDD.
Schizophrenia Research | 2005
Avram J. Holmes; Angus W. MacDonald; Cameron S. Carter; M Deanna; V. Andrew Stenger; Jonathan D. Cohen
Patients with schizophrenia frequently demonstrate hypofrontality in tasks that require executive processing; however questions still remain as to whether prefrontal cortex dysfunctions are specific to schizophrenia, or a general feature of major psychopathology. Context processing is conceptualized as an executive function associated with attention and working memory processes. Impairment in the ability of patients with schizophrenia to represent and maintain context information has been previously reported in a number of studies. To examine the question of the specificity of a context processing deficit to schizophrenia, we used functional MRI and an expectancy AX continuous performance task designed to assess context processing in a group of healthy controls (n=9), depressed patient controls (n=10), and patients with schizophrenia (n=7). The behavioral performance was consistent with a context processing deficit in patients with schizophrenia, but not those with depression. The imaging data replicate previous results in showing abnormal activity in the right middle frontal gyrus (BA9) in schizophrenia patients related to context processing.
Nature Neuroscience | 2015
Danhong Wang; Randy L. Buckner; Michael D. Fox; Daphne J. Holt; Avram J. Holmes; Sophia Stoecklein; Georg Langs; Ruiqi Pan; Tianyi Qian; Kuncheng Li; Justin T. Baker; Steven M. Stufflebeam; Kai Wang; Xiaomin Wang; Bo Hong; Hesheng Liu
The capacity to identify the unique functional architecture of an individuals brain is a crucial step toward personalized medicine and understanding the neural basis of variation in human cognition and behavior. Here we developed a cortical parcellation approach to accurately map functional organization at the individual level using resting-state functional magnetic resonance imaging (fMRI). A population-based functional atlas and a map of inter-individual variability were employed to guide the iterative search for functional networks in individual subjects. Functional networks mapped by this approach were highly reproducible within subjects and effectively captured the variability across subjects, including individual differences in brain lateralization. The algorithm performed well across different subject populations and data types, including task fMRI data. The approach was then validated by invasive cortical stimulation mapping in surgical patients, suggesting potential for use in clinical applications.