Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Diego A. Pizzagalli is active.

Publication


Featured researches published by Diego A. Pizzagalli.


American Journal of Psychiatry | 2009

Reduced Caudate and Nucleus Accumbens Response to Rewards in Unmedicated Individuals With Major Depressive Disorder

Diego A. Pizzagalli; Avram J. Holmes; Daniel G. Dillon; B.A. Elena L. Goetz; B.A. Jeffrey L. Birk; A.M. Ryan Bogdan; Darin D. Dougherty; Dan V. Iosifescu; Scott L. Rauch; Maurizio Fava

OBJECTIVE Major depressive disorder is characterized by impaired reward processing, possibly due to dysfunction in the basal ganglia. However, few neuroimaging studies of depression have distinguished between anticipatory and consummatory phases of reward processing. Using functional MRI (fMRI) and a task that dissociates anticipatory and consummatory phases of reward processing, the authors tested the hypothesis that individuals with major depression would show reduced reward-related responses in basal ganglia structures. METHOD A monetary incentive delay task was presented to 30 unmedicated individuals with major depressive disorder and 31 healthy comparison subjects during fMRI scanning. Whole-brain analyses focused on neural responses to reward-predicting cues and rewarding outcomes (i.e., monetary gains). Secondary analyses focused on the relationship between anhedonic symptoms and basal ganglia volumes. RESULTS Relative to comparison subjects, participants with major depression showed significantly weaker responses to gains in the left nucleus accumbens and the caudate bilaterally. Group differences in these regions were specific to rewarding outcomes and did not generalize to neutral or negative outcomes, although relatively reduced responses to monetary penalties in the major depression group emerged in other caudate regions. By contrast, evidence for group differences during reward anticipation was weaker, although participants with major depression showed reduced activation to reward cues in a small sector of the left posterior putamen. In the major depression group, anhedonic symptoms and depression severity were associated with reduced caudate volume bilaterally. CONCLUSIONS These results suggest that basal ganglia dysfunction in major depression may affect the consummatory phase of reward processing. Additionally, morphometric results suggest that anhedonia in major depression is related to caudate volume.


Neuropsychopharmacology | 2011

Frontocingulate Dysfunction in Depression: Toward Biomarkers of Treatment Response

Diego A. Pizzagalli

Increased rostral anterior cingulate cortex (rACC) activity has emerged as a promising predictor of treatment response in depression, but neither the reliability of this relationship nor the mechanisms supporting it have been thoroughly investigated. This review takes a three-pronged approach to these issues. First, I present a meta-analysis demonstrating that the relationship between resting rACC activity and treatment response is robust. Second, I propose that the rACC plays a key role in treatment outcome because of its ‘hub’ position in the default network. Specifically, I hypothesize that elevated resting rACC activity confers better treatment outcomes by fostering adaptive self-referential processing and by helping to recalibrate relationships between the default network and a ‘task-positive network’ that comprises dorsolateral prefrontal and dorsal cingulate regions implicated in cognitive control. Third, I support this hypothesis by reviewing neuropsychological, electrophysiological, and neuroimaging data on frontocingulate dysfunction in depression. The review ends with a discussion of the limitations of current work and future directions.


Psychopharmacology | 2011

Effects of early life stress on cognitive and affective function: an integrated review of human literature

Pia Pechtel; Diego A. Pizzagalli

RationaleThe investigation of putative effects of early life stress (ELS) in humans on later behavior and neurobiology is a fast developing field. While epidemiological and neurobiological studies paint a somber picture of negative outcomes, relatively little attention has been devoted to integrating the breadth of findings concerning possible cognitive and emotional deficits associated with ELS. Emerging findings from longitudinal studies examining developmental trajectories of the brain in healthy samples may provide a new framework to understand mechanisms underlying ELS sequelae.ObjectiveThe goal of this review was twofold. The first was to summarize findings from longitudinal data on normative brain development. The second was to utilize this framework of normative brain development to interpret changes in developmental trajectories associated with deficits in cognitive and affective function following ELS.ResultsFive principles of normative brain development were identified and used to discuss behavioral and neural sequelae of ELS. Early adversity was found to be associated with deficits in a range of cognitive (cognitive performance, memory, and executive functioning) and affective (reward processing, processing of social and affective stimuli, and emotion regulation) functions.ConclusionThree general conclusions emerge: (1) higher-order, complex cognitive and affective functions associated with brain regions undergoing protracted postnatal development are particularly vulnerable to the deleterious effects of ELS; (2) the amygdala is particularly sensitive to early ELS; and (3) several deficits, particularly those in the affective domain, appear to persist years after ELS has ceased and may increase risk for later psychopathology.


JAMA Psychiatry | 2015

Large-Scale Network Dysfunction in Major Depressive Disorder: A Meta-analysis of Resting-State Functional Connectivity

Roselinde H. Kaiser; Jessica R. Andrews-Hanna; Tor D. Wager; Diego A. Pizzagalli

IMPORTANCE Major depressive disorder (MDD) has been linked to imbalanced communication among large-scale brain networks, as reflected by abnormal resting-state functional connectivity (rsFC). However, given variable methods and results across studies, identifying consistent patterns of network dysfunction in MDD has been elusive. OBJECTIVE To investigate network dysfunction in MDD through a meta-analysis of rsFC studies. DATA SOURCES Seed-based voxelwise rsFC studies comparing individuals with MDD with healthy controls (published before June 30, 2014) were retrieved from electronic databases (PubMed, Web of Science, and EMBASE) and authors contacted for additional data. STUDY SELECTION Twenty-seven seed-based voxel-wise rsFC data sets from 25 publications (556 individuals with MDD and 518 healthy controls) were included in the meta-analysis. DATA EXTRACTION AND SYNTHESIS Coordinates of seed regions of interest and between-group effects were extracted. Seeds were categorized into seed-networks by their location within a priori functional networks. Multilevel kernel density analysis of between-group effects identified brain systems in which MDD was associated with hyperconnectivity (increased positive or reduced negative connectivity) or hypoconnectivity (increased negative or reduced positive connectivity) with each seed-network. RESULTS Major depressive disorder was characterized by hypoconnectivity within the frontoparietal network, a set of regions involved in cognitive control of attention and emotion regulation, and hypoconnectivity between frontoparietal systems and parietal regions of the dorsal attention network involved in attending to the external environment. Major depressive disorder was also associated with hyperconnectivity within the default network, a network believed to support internally oriented and self-referential thought, and hyperconnectivity between frontoparietal control systems and regions of the default network. Finally, the MDD groups exhibited hypoconnectivity between neural systems involved in processing emotion or salience and midline cortical regions that may mediate top-down regulation of such functions. CONCLUSIONS AND RELEVANCE Reduced connectivity within frontoparietal control systems and imbalanced connectivity between control systems and networks involved in internal or external attention may reflect depressive biases toward internal thoughts at the cost of engaging with the external world. Meanwhile, altered connectivity between neural systems involved in cognitive control and those that support salience or emotion processing may relate to deficits regulating mood. These findings provide an empirical foundation for a neurocognitive model in which network dysfunction underlies core cognitive and affective abnormalities in depression.


Biological Psychiatry | 2010

Brain reactivity to smoking cues prior to smoking cessation predicts ability to maintain tobacco abstinence.

Amy C. Janes; Diego A. Pizzagalli; Sarah Richardt; Blaise deB. Frederick; Sarah Chuzi; Gladys N. Pachas; Melissa A. Culhane; Avram J. Holmes; Maurizio Fava; A. Eden Evins; Marc J. Kaufman

BACKGROUND Developing the means to identify smokers at high risk for relapse could advance relapse prevention therapy. We hypothesized that functional magnetic resonance imaging (fMRI) reactivity to smoking-related cues, measured before a quit attempt, could identify smokers with heightened relapse vulnerability. METHODS Before quitting smoking, 21 nicotine-dependent women underwent fMRI during which smoking-related and neutral images were shown. These smokers also were tested for possible attentional biases to smoking-related words using a computerized emotional Stroop (ES) task previously found to predict relapse. Smokers then made a quit attempt and were grouped based on outcomes (abstinence vs. slip: smoking > or = 1 cigarette after attaining abstinence). Prequit fMRI and ES measurements in these groups were compared. RESULTS Slip subjects had heightened fMRI reactivity to smoking-related images in brain regions implicated in emotion, interoceptive awareness, and motor planning and execution. Insula and dorsal anterior cingulate cortex (dACC) reactivity induced by smoking images correlated with an attentional bias to smoking-related words. A discriminant analysis of ES and fMRI data predicted outcomes with 79% accuracy. Additionally, smokers who slipped had decreased fMRI functional connectivity between an insula-containing network and brain regions involved in cognitive control, including the dACC and dorsal lateral prefrontal cortex, possibly reflecting reduced top-down control of cue-induced emotions. CONCLUSIONS These findings suggest that the insula and dACC are important substrates of smoking relapse vulnerability. The data also suggest that relapse-vulnerable smokers can be identified before quit attempts, which could enable personalized treatment, improve tobacco-dependence treatment outcomes, and reduce smoking-related morbidity and mortality.


Molecular Psychiatry | 2004

Functional but not structural subgenual prefrontal cortex abnormalities in melancholia

Diego A. Pizzagalli; Terrence R. Oakes; Andrew S. Fox; Moo K. Chung; Christine L. Larson; Heather C. Abercrombie; Stacey M. Schaefer; Ruth M. Benca; Richard J. Davidson

Major depression is a heterogeneous condition, and the search for neural correlates specific to clinically defined subtypes has been inconclusive. Theoretical considerations implicate frontostriatal, particularly subgenual prefrontal cortex (PFC), dysfunction in the pathophysiology of melancholia—a subtype of depression characterized by anhedonia—but no empirical evidence has been found yet for such a link. To test the hypothesis that melancholic, but not nonmelancholic depression, is associated with the subgenual PFC impairment, concurrent measurement of brain electrical (electroencephalogram, EEG) and metabolic (positron emission tomography, PET) activity were obtained in 38 unmedicated subjects with DSM-IV major depressive disorder (20 melancholic, 18 nonmelancholic subjects), and 18 comparison subjects. EEG data were analyzed with a tomographic source localization method that computed the cortical three-dimensional distribution of current density for standard frequency bands, allowing voxelwise correlations between the EEG and PET data. Voxel-based morphometry analyses of structural magnetic resonance imaging (MRI) data were performed to assess potential structural abnormalities in melancholia. Melancholia was associated with reduced activity in the subgenual PFC (Brodmann area 25), manifested by increased inhibitory delta activity (1.5–6.0 Hz) and decreased glucose metabolism, which themselves were inversely correlated. Following antidepressant treatment, depressed subjects with the largest reductions in depression severity showed the lowest post-treatment subgenual PFC delta activity. Analyses of structural MRI revealed no group differences in the subgenual PFC, but in melancholic subjects, a negative correlation between gray matter density and age emerged. Based on preclinical evidence, we suggest that subgenual PFC dysfunction in melancholia may be associated with blunted hedonic response and exaggerated stress responsiveness.


Annual Review of Clinical Psychology | 2014

Depression, Stress, and Anhedonia: Toward a Synthesis and Integrated Model

Diego A. Pizzagalli

Depression is a significant public health problem, but its etiology and pathophysiology remain poorly understood. Such incomplete understanding likely arises from the fact that depression encompasses a heterogeneous set of disorders. To overcome these limitations, renewed interest in intermediate phenotypes (endophenotypes) has resurfaced, and anhedonia has emerged as one of the most promising endophenotypes of depression. Here, a heuristic model is presented postulating that anhedonia arises from dysfunctional interactions between stress and brain reward systems. To this end, we review and integrate three bodies of independent literature investigating the role of (a) anhedonia, (b) dopamine, and (c) stress in depression. In a fourth section, we summarize animal data indicating that stress negatively affects mesocorticolimbic dopaminergic pathways critically implicated in incentive motivation and reinforcement learning. In the last section, we provide a synthesis of these four literatures, present initial evidence consistent with our model, and discuss directions for future research.


NeuroImage | 2002

Affective Judgments of Faces Modulate Early Activity (160 ms) within the Fusiform Gyri

Diego A. Pizzagalli; Dietrich Lehmann; Andrew M. Hendrick; Marianne Regard; Roberto D. Pascual-Marqui; Richard J. Davidson

Functional neuroimaging studies have implicated the fusiform gyri (FG) in structural encoding of faces, while event-related potential (ERP) and magnetoen- cephalography studies have shown that such encoding occurs approximately 170 ms poststimulus. Behavioral and functional neuroimaging studies suggest that pro- cesses involved in face recognition may be strongly modulated by socially relevant information conveyed by faces. To test the hypothesis that affective informa- tion indeed modulates early stages of face processing, ERPs were recorded to individually assessed liked, neutral, and disliked faces and checkerboard-reversal stimuli. At the N170 latency, the cortical three-dimen- sional distribution of current density was computed in stereotactic space using a tomographic source local- ization technique. Mean activity was extracted from the FG, defined by structure-probability maps, and a meta-cluster delineated by the coordinates of the voxel with the strongest face-sensitive response from five published functional magnetic resonance imaging studies. In the FG, 160 ms poststimulus, liked faces elicited stronger activation than disliked and neutral faces and checkerboard-reversal stimuli. Further, confirming recent results, affect-modulated brain elec- trical activity started very early in the human brain (112 ms). These findings suggest that affective fea- tures conveyed by faces modulate structural face en- coding. Behavioral results from an independent study revealed that the stimuli were not biased toward par- ticular facial expressions and confirmed that liked faces were rated as more attractive. Increased FG ac- tivation for liked faces may thus be interpreted as reflecting enhanced attention due to their saliency.


Neuroreport | 1999

Rapid emotional face processing in the human right and left brain hemispheres : an ERP study

Diego A. Pizzagalli; Marianne Regard; Dietrich Lehmann

Imaging work has begun to elucidate the spatial organization of emotions; the temporal organization, however, remains unclear. Adaptive behavior relies on rapid monitoring of potentially salient cues (typically with high emotional value) in the environment. To clarify the timing and speed of emotional processing in the two human brain hemispheres, event-related potentials (ERPs) were recorded during hemifield presentation of face images. ERPs were separately computed for disliked and liked faces, as individually assessed by postrecording affective ratings. After stimulation of either hemisphere, personal affective judgements of face images significantly modulated ERP responses at early stages, 80-116 ms after right hemisphere and 104-160 ms after left hemisphere stimulation. This is the first electrophysiological evidence for valence-dependent, automatic, i.e. pre-attentive emotional processing in humans.


NeuroImage | 2009

The role of the nucleus accumbens and rostral anterior cingulate cortex in anhedonia: integration of resting EEG, fMRI, and volumetric techniques.

Jan Wacker; Daniel G. Dillon; Diego A. Pizzagalli

Anhedonia, the reduced propensity to experience pleasure, is a promising endophenotype and vulnerability factor for several psychiatric disorders, including depression and schizophrenia. In the present study, we used resting electroencephalography, functional magnetic resonance imaging, and volumetric analyses to probe putative associations between anhedonia and individual differences in key nodes of the brains reward system in a non-clinical sample. We found that anhedonia, but not other symptoms of depression or anxiety, was correlated with reduced nucleus accumbens (NAcc) responses to rewards (gains in a monetary incentive delay task), reduced NAcc volume, and increased resting delta current density (i.e., decreased resting activity) in the rostral anterior cingulate cortex (rACC), an area previously implicated in positive subjective experience. In addition, NAcc reward responses were inversely associated with rACC resting delta activity, supporting the hypothesis that delta might be lawfully related to activity within the brains reward circuit. Taken together, these results help elucidate the neural basis of anhedonia and strengthen the argument for anhedonia as an endophenotype for depression.

Collaboration


Dive into the Diego A. Pizzagalli's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard J. Davidson

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Madhukar H. Trivedi

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Crystal Cooper

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge