Avrum Spira
Boston University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Avrum Spira.
Nature Medicine | 2007
Avrum Spira; Jennifer Beane; Vishal Shah; Katrina Steiling; Gang Liu; Frank Schembri; Sean Gilman; Yves-Martine Dumas; Paul Calner; Paola Sebastiani; Sriram Sridhar; John F. Beamis; Carla Lamb; Timothy Anderson; Norman P. Gerry; Joseph Keane; Marc E. Lenburg; Jerome S. Brody
Lung cancer is the leading cause of death from cancer in the US and the world. The high mortality rate (80–85% within 5 years) results, in part, from a lack of effective tools to diagnose the disease at an early stage. Given that cigarette smoke creates a field of injury throughout the airway, we sought to determine if gene expression in histologically normal large-airway epithelial cells obtained at bronchoscopy from smokers with suspicion of lung cancer could be used as a lung cancer biomarker. Using a training set (n = 77) and gene-expression profiles from Affymetrix HG-U133A microarrays, we identified an 80-gene biomarker that distinguishes smokers with and without lung cancer. We tested the biomarker on an independent test set (n = 52), with an accuracy of 83% (80% sensitive, 84% specific), and on an additional validation set independently obtained from five medical centers (n = 35). Our biomarker had ∼90% sensitivity for stage 1 cancer across all subjects. Combining cytopathology of lower airway cells obtained at bronchoscopy with the biomarker yielded 95% sensitivity and a 95% negative predictive value. These findings indicate that gene expression in cytologically normal large-airway epithelial cells can serve as a lung cancer biomarker, potentially owing to a cancer-specific airway-wide response to cigarette smoke.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Frank Schembri; Sriram Sridhar; Catalina Perdomo; Adam M. Gustafson; Xiaoling Zhang; Ayla Ergun; Jining Lü; Gang Liu; Xiaohui Zhang; Jessica Bowers; Cyrus Vaziri; Kristen Ott; Kelly Sensinger; James J. Collins; Jerome S. Brody; Robert C. Getts; Marc E. Lenburg; Avrum Spira
We have shown that smoking impacts bronchial airway gene expression and that heterogeneity in this response associates with smoking-related disease risk. In this study, we sought to determine whether microRNAs (miRNAs) play a role in regulating the airway gene expression response to smoking. We examined whole-genome miRNA and mRNA expression in bronchial airway epithelium from current and never smokers (n = 20) and found 28 miRNAs to be differentially expressed (P < 0.05) with the majority being down-regulated in smokers. We further identified a number of mRNAs whose expression level is highly inversely correlated with miRNA expression in vivo. Many of these mRNAs contain potential binding sites for the differentially expressed miRNAs in their 3′-untranslated region (UTR) and are themselves affected by smoking. We found that either increasing or decreasing the levels of mir-218 (a miRNA that is strongly affected by smoking) in both primary bronchial epithelial cells and H1299 cells was sufficient to cause a corresponding decrease or increase in the expression of predicted mir-218 mRNA targets, respectively. Further, mir-218 expression is reduced in primary bronchial epithelium exposed to cigarette smoke condensate (CSC), and alteration of mir-218 levels in these cells diminishes the induction of the predicted mir-218 target MAFG in response to CSC. These data indicate that mir-218 levels modulate the airway epithelial gene expression response to cigarette smoke and support a role for miRNAs in regulating host response to environmental toxins.
Science Translational Medicine | 2010
Adam M. Gustafson; Raffaella Soldi; Christina Anderlind; Mary Beth Scholand; Xiaohui Zhang; Kendal G Cooper; Darren Walker; Annette McWilliams; Gang Liu; Eva Szabo; Jerome S. Brody; Pierre P. Massion; Marc E. Lenburg; Stephen Lam; Andrea Bild; Avrum Spira
A cancer-associated signaling pathway is reversibly activated in the normal airways of smokers before they develop lung cancer, presenting an opportunity for preventive therapy. An Ounce of Prevention for Lung Cancer Lung cancer takes a terrific toll on humankind. Despite our understanding of the contribution of tobacco smoke, this knowledge has not been able to reverse the global increase in lung cancer incidence. New approaches are needed. Is there a way to tell whether a smoker will develop cancer and, even more important, can we see when this process starts so we can stop it? Work from Gustafson and colleagues has defined a biochemical harbinger of cancer in seemingly normal respiratory tissue that can be reversed before cancer begins. Numerous cellular signaling pathways are deregulated in cancers, such as the Ras, p53, and phosphatidylinositol 3-kinase (PI3K) pathways. A molecular understanding of lung cancer may help to develop effective drugs for deterrence. To see whether they could find a predictor of impending cancer, the authors examined normal respiratory tract tissue from smokers with lung cancer or other abnormalities. By looking for previously determined gene expression signatures for various signaling pathways, they found that one of these pathways—PI3K—was clearly activated above normal values. Moreover, the PI3K pathway was already turned on in smokers with abnormal dysplastic lesions, precursors to lung cancer. Lung cancer cells themselves showed even higher expression of the genes in the PI3K pathway. Concluding that elevated PI3K pathway activity precedes the development of lung cancer, the authors assessed gene expression in tissue from patients with dysplasias who had been successfully treated with myo-inositol, an inhibitor of PI3K, finding effective down-regulation of the PI3K pathway. Treatment of cancers with surgery, radiation, and chemotherapy—or, in some cases, targeted molecular therapies—may be the standard of care at present. But prevention should surely be the ultimate goal. The new tool reported in this article—measurement of PI3K pathway activation—and the demonstration that this is an early and reversible step in lung tumorigenesis are hopeful signs. Although only a subset of smokers develop lung cancer, we cannot determine which smokers are at highest risk for cancer development, nor do we know the signaling pathways altered early in the process of tumorigenesis in these individuals. On the basis of the concept that cigarette smoke creates a molecular field of injury throughout the respiratory tract, this study explores oncogenic pathway deregulation in cytologically normal proximal airway epithelial cells of smokers at risk for lung cancer. We observed a significant increase in a genomic signature of phosphatidylinositol 3-kinase (PI3K) pathway activation in the cytologically normal bronchial airway of smokers with lung cancer and smokers with dysplastic lesions, suggesting that PI3K is activated in the proximal airway before tumorigenesis. Further, PI3K activity is decreased in the airway of high-risk smokers who had significant regression of dysplasia after treatment with the chemopreventive agent myo-inositol, and myo-inositol inhibits the PI3K pathway in vitro. These results suggest that deregulation of the PI3K pathway in the bronchial airway epithelium of smokers is an early, measurable, and reversible event in the development of lung cancer and that genomic profiling of these relatively accessible airway cells may enable personalized approaches to chemoprevention and therapy. Our work further suggests that additional lung cancer chemoprevention trials either targeting the PI3K pathway or measuring airway PI3K activation as an intermediate endpoint are warranted.
American Journal of Human Genetics | 2006
Dawn L. DeMeo; Thomas J. Mariani; Christoph Lange; Sorachai Srisuma; Augusto A. Litonjua; Juan C. Celedón; Stephen Lake; John J. Reilly; Harold A. Chapman; Brigham H. Mecham; Kathleen J. Haley; Jody S. Sylvia; David Sparrow; Avrum Spira; Jennifer Beane; Victor Pinto-Plata; Frank E. Speizer; Steven D. Shapiro; Scott T. Weiss; Edwin K. Silverman
RATIONALE Chronic obstructive pulmonary disease (COPD) is a complex disease influenced by multiple genes and environmental factors. A region on chromosome 2q has been shown to be linked to COPD. A positional candidate gene from the chromosome 2q region SERPINE2 (Serpin peptidase inhibitor, clade E [nexin, plasminogen activator inhibitor type 1], member 2), was previously evaluated as a susceptibility gene for COPD in two association studies, but the results were contradictory. OBJECTIVES To identify the relationship between SERPINE2 polymorphisms and COPD-related phenotypes using family-based and case-control association studies. METHODS In the present study, we genotyped 25 single nucleotide polymorphisms (SNPs) from SERPINE2 and analyzed qualitative and quantitative COPD phenotypes in 635 pedigrees with 1,910 individuals and an independent case-control population that included 973 COPD cases and 956 control subjects. The family data were analyzed using family-based association tests. The case-control data were analyzed using logistic regression and linear models. MEASUREMENTS AND MAIN RESULTS Six SNPs demonstrated significant associations with COPD phenotypes in the family-based association analysis (0.0016<or=p<or=0.042). Five of these SNPs demonstrated replicated associations in the case-control analysis (0.021<or=p<or=0.031). In addition, the results of haplotype analyses supported the results from single SNP analyses. CONCLUSIONS These data provide further support for SERPINE2 as a COPD susceptibility gene.
Genome Biology | 2007
Jennifer Beane; Paola Sebastiani; Gang Liu; Jerome S. Brody; Marc E. Lenburg; Avrum Spira
BackgroundTobacco use remains the leading preventable cause of death in the US. The risk of dying from smoking-related diseases remains elevated for former smokers years after quitting. The identification of irreversible effects of tobacco smoke on airway gene expression may provide insights into the causes of this elevated risk.ResultsUsing oligonucleotide microarrays, we measured gene expression in large airway epithelial cells obtained via bronchoscopy from never, current, and former smokers (n = 104). Linear models identified 175 genes differentially expressed between current and never smokers, and classified these as irreversible (n = 28), slowly reversible (n = 6), or rapidly reversible (n = 139) based on their expression in former smokers. A greater percentage of irreversible and slowly reversible genes were down-regulated by smoking, suggesting possible mechanisms for persistent changes, such as allelic loss at 16q13. Similarities with airway epithelium gene expression changes caused by other environmental exposures suggest that common mechanisms are involved in the response to tobacco smoke. Finally, using irreversible genes, we built a biomarker of ever exposure to tobacco smoke capable of classifying an independent set of former and current smokers with 81% and 100% accuracy, respectively.ConclusionWe have categorized smoking-related changes in airway gene expression by their degree of reversibility upon smoking cessation. Our findings provide insights into the mechanisms leading to reversible and persistent effects of tobacco smoke that may explain former smokers increased risk for developing tobacco-induced lung disease and provide novel targets for chemoprophylaxis. Airway gene expression may also serve as a sensitive biomarker to identify individuals with past exposure to tobacco smoke.
PLOS ONE | 2013
Arash Hossein-Nezhad; Avrum Spira; Michael F. Holick
Background Although there have been numerous observations of vitamin D deficiency and its links to chronic diseases, no studies have reported on how vitamin D status and vitamin D3 supplementation affects broad gene expression in humans. The objective of this study was to determine the effect of vitamin D status and subsequent vitamin D supplementation on broad gene expression in healthy adults. (Trial registration: ClinicalTrials.gov NCT01696409). Methods and Findings A randomized, double-blind, single center pilot trial was conducted for comparing vitamin D supplementation with either 400 IUs (n = 3) or 2000 IUs (n = 5) vitamin D3 daily for 2 months on broad gene expression in the white blood cells collected from 8 healthy adults in the winter. Microarrays of the 16 buffy coats from eight subjects passed the quality control filters and normalized with the RMA method. Vitamin D3 supplementation that improved serum 25-hydroxyvitamin D concentrations was associated with at least a 1.5 fold alteration in the expression of 291 genes. There was a significant difference in the expression of 66 genes between subjects at baseline with vitamin D deficiency (25(OH)D<20 ng/ml) and subjects with a 25(OH)D>20 ng/ml. After vitamin D3 supplementation gene expression of these 66 genes was similar for both groups. Seventeen vitamin D-regulated genes with new candidate vitamin D response elements including TRIM27, CD83, COPB2, YRNA and CETN3 which have been shown to be important for transcriptional regulation, immune function, response to stress and DNA repair were identified. Conclusion/Significance Our data suggest that any improvement in vitamin D status will significantly affect expression of genes that have a wide variety of biologic functions of more than 160 pathways linked to cancer, autoimmune disorders and cardiovascular disease with have been associated with vitamin D deficiency. This study reveals for the first time molecular finger prints that help explain the nonskeletal health benefits of vitamin D. Trial Registration ClinicalTrials.gov NCT01696409
Cancer Prevention Research | 2011
Jennifer Beane; Jessica Vick; Frank Schembri; Christina Anderlind; Adam C. Gower; Joshua D. Campbell; Lingqi Luo; Xiaohui Zhang; Ji Xiao; Yuriy O. Alekseyev; Shenglong Wang; Shawn Levy; Pierre P. Massion; Marc E. Lenburg; Avrum Spira
Cigarette smoke creates a molecular field of injury in epithelial cells that line the respiratory tract. We hypothesized that transcriptome sequencing (RNA-Seq) will enhance our understanding of the field of molecular injury in response to tobacco smoke exposure and lung cancer pathogenesis by identifying gene expression differences not interrogated or accurately measured by microarrays. We sequenced the high-molecular-weight fraction of total RNA (>200 nt) from pooled bronchial airway epithelial cell brushings (n = 3 patients per pool) obtained during bronchoscopy from healthy never smoker (NS) and current smoker (S) volunteers and smokers with (C) and without (NC) lung cancer undergoing lung nodule resection surgery. RNA-Seq libraries were prepared using 2 distinct approaches, one capable of capturing non-polyadenylated RNA (the prototype NuGEN Ovation RNA-Seq protocol) and the other designed to measure only polyadenylated RNA (the standard Illumina mRNA-Seq protocol) followed by sequencing generating approximately 29 million 36 nt reads per pool and approximately 22 million 75 nt paired-end reads per pool, respectively. The NuGEN protocol captured additional transcripts not detected by the Illumina protocol at the expense of reduced coverage of polyadenylated transcripts, while longer read lengths and a paired-end sequencing strategy significantly improved the number of reads that could be aligned to the genome. The aligned reads derived from the two complementary protocols were used to define the compendium of genes expressed in the airway epithelium (n = 20,573 genes). Pathways related to the metabolism of xenobiotics by cytochrome P450, retinol metabolism, and oxidoreductase activity were enriched among genes differentially expressed in smokers, whereas chemokine signaling pathways, cytokine–cytokine receptor interactions, and cell adhesion molecules were enriched among genes differentially expressed in smokers with lung cancer. There was a significant correlation between the RNA-Seq gene expression data and Affymetrix microarray data generated from the same samples (P < 0.001); however, the RNA-Seq data detected additional smoking- and cancer-related transcripts whose expression was were either not interrogated by or was not found to be significantly altered when using microarrays, including smoking-related changes in the inflammatory genes S100A8 and S100A9 and cancer-related changes in MUC5AC and secretoglobin (SCGB3A1). Quantitative real-time PCR confirmed differential expression of select genes and non-coding RNAs within individual samples. These results demonstrate that transcriptome sequencing has the potential to provide new insights into the biology of the airway field of injury associated with smoking and lung cancer. The measurement of both coding and non-coding transcripts by RNA-Seq has the potential to help elucidate mechanisms of response to tobacco smoke and to identify additional biomarkers of lung cancer risk and novel targets for chemoprevention. Cancer Prev Res; 4(6); 803–17. ©2011 AACR.
Cancer Prevention Research | 2008
Katrina Steiling; John J. Ryan; Jerome S. Brody; Avrum Spira
The concept of field cancerization was first introduced over 6 decades ago in the setting of oral cancer. Later, field cancerization involving histologic and molecular changes of neoplasms and adjacent tissue began to be characterized in smokers with or without lung cancer. Investigators also described a diffuse, nonneoplastic field of molecular injury throughout the respiratory tract that is attributable to cigarette smoking and susceptibility to smoking-induced lung disease. The potential molecular origins of field cancerization and the field of injury following cigarette smoke exposure in lung and airway epithelia are critical to understanding their potential impact on clinical diagnostics and therapeutics for smoking-induced lung disease.
Physiological Genomics | 2010
Xiaoling Zhang; Paola Sebastiani; Gang Liu; Frank Schembri; Xiaohui Zhang; Yves M. Dumas; Erika M. Langer; Yuriy O. Alekseyev; George T. O'Connor; Daniel R. Brooks; Marc E. Lenburg; Avrum Spira
Previous studies have shown that physiological responses to cigarette smoke can be detected via bronchial airway epithelium gene expression profiling and that heterogeneity in this gene expression response to smoking is associated with lung cancer. In this study, we sought to determine the similarity of the effects of tobacco smoke throughout the respiratory tract by determining patterns of smoking-related gene expression in paired nasal and bronchial epithelial brushings collected from 14 healthy nonsmokers and 13 healthy current smokers. Using whole genome expression arrays, we identified 119 genes whose expression was affected by smoking similarly in both bronchial and nasal epithelium, including genes related to detoxification, oxidative stress, and wound healing. While the vast majority of smoking-related gene expression changes occur in both bronchial and nasal epithelium, we also identified 27 genes whose expression was affected by smoking more dramatically in bronchial epithelium than nasal epithelium. Both common and site-specific smoking-related gene expression profiles were validated using independent microarray datasets. Differential expression of select genes was also confirmed by RT-PCR. That smoking induces largely similar gene expression changes in both nasal and bronchial epithelium suggests that the consequences of cigarette smoke exposure can be measured in tissues throughout the respiratory tract. Our findings suggest that nasal epithelial gene expression may serve as a relatively noninvasive surrogate to measure physiological responses to cigarette smoke and/or other inhaled exposures in large-scale epidemiological studies.
The New England Journal of Medicine | 2015
Gerard A. Silvestri; Anil Vachani; Duncan Whitney; Michael R. Elashoff; Kate Porta Smith; J. Scott Ferguson; Ed Parsons; Nandita Mitra; Jerome S. Brody; Marc E. Lenburg; Avrum Spira
BACKGROUND Bronchoscopy is frequently nondiagnostic in patients with pulmonary lesions suspected to be lung cancer. This often results in additional invasive testing, although many lesions are benign. We sought to validate a bronchial-airway gene-expression classifier that could improve the diagnostic performance of bronchoscopy. METHODS Current or former smokers undergoing bronchoscopy for suspected lung cancer were enrolled at 28 centers in two multicenter prospective studies (AEGIS-1 and AEGIS-2). A gene-expression classifier was measured in epithelial cells collected from the normal-appearing mainstem bronchus to assess the probability of lung cancer. RESULTS A total of 639 patients in AEGIS-1 (298 patients) and AEGIS-2 (341 patients) met the criteria for inclusion. A total of 43% of bronchoscopic examinations were nondiagnostic for lung cancer, and invasive procedures were performed after bronchoscopy in 35% of patients with benign lesions. In AEGIS-1, the classifier had an area under the receiver-operating-characteristic curve (AUC) of 0.78 (95% confidence interval [CI], 0.73 to 0.83), a sensitivity of 88% (95% CI, 83 to 92), and a specificity of 47% (95% CI, 37 to 58). In AEGIS-2, the classifier had an AUC of 0.74 (95% CI, 0.68 to 0.80), a sensitivity of 89% (95% CI, 84 to 92), and a specificity of 47% (95% CI, 36 to 59). The combination of the classifier plus bronchoscopy had a sensitivity of 96% (95% CI, 93 to 98) in AEGIS-1 and 98% (95% CI, 96 to 99) in AEGIS-2, independent of lesion size and location. In 101 patients with an intermediate pretest probability of cancer, the negative predictive value of the classifier was 91% (95% CI, 75 to 98) among patients with a nondiagnostic bronchoscopic examination. CONCLUSIONS The gene-expression classifier improved the diagnostic performance of bronchoscopy for the detection of lung cancer. In intermediate-risk patients with a nondiagnostic bronchoscopic examination, a negative classifier score provides support for a more conservative diagnostic approach. (Funded by Allegro Diagnostics and others; AEGIS-1 and AEGIS-2 ClinicalTrials.gov numbers, NCT01309087 and NCT00746759.).