Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marc E. Lenburg is active.

Publication


Featured researches published by Marc E. Lenburg.


The New England Journal of Medicine | 2008

Dicer, Drosha, and outcomes in patients with ovarian cancer.

William M. Merritt; Yvonne G. Lin; Liz Y. Han; Aparna A. Kamat; Whitney A. Spannuth; Rosemarie Schmandt; Diana L. Urbauer; Len A. Pennacchio; Jan Fang Cheng; Alpa M. Nick; Michael T. Deavers; Alexandra A. Mourad-Zeidan; Hua Wang; Peter R. Mueller; Marc E. Lenburg; Joe W. Gray; Samuel Mok; Michael J. Birrer; Gabriel Lopez-Berestein; Robert L. Coleman; Menashe Bar-Eli; Anil K. Sood

BACKGROUND We studied Dicer and Drosha, components of the RNA-interference machinery, in ovarian cancer. METHODS We measured messenger RNA (mRNA) levels of Dicer and Drosha in specimens of invasive epithelial ovarian cancer from 111 patients, using a quantitative reverse-transcriptase-polymerase-chain-reaction assay, and compared the results with clinical outcomes. Validation was performed with the use of published microarray data from cohorts of patients with ovarian, breast, and lung cancer. Mutational analyses of genomic DNA from the Dicer and Drosha genes were performed in a subgroup of ovarian-cancer specimens. Dicer-dependent functional assays were performed by means of in vitro transfection with small interfering RNA (siRNA) and short hairpin RNA (shRNA). RESULTS Levels of Dicer and Drosha mRNA correlated with the levels of expression of the corresponding protein and were decreased in 60% and 51% of ovarian-cancer specimens, respectively. Low Dicer expression was significantly associated with advanced tumor stage (P=0.007), and low Drosha expression with suboptimal surgical cytoreduction (P=0.02). Cancer specimens with both high Dicer expression and high Drosha expression were associated with increased median survival (>11 years, vs. 2.66 years for other subgroups; P<0.001). We found three independent predictors of reduced disease-specific survival in multivariate analyses: low Dicer expression (hazard ratio, 2.10; P=0.02), high-grade histologic features (hazard ratio, 2.46; P=0.03), and poor response to chemotherapy (hazard ratio, 3.95; P<0.001). Poor clinical outcomes among patients with low Dicer expression were validated in additional cohorts of patients. Rare missense mutations were found in the Dicer and Drosha genes, but their presence or absence did not correlate with the level of expression. Functional assays indicated that gene silencing with shRNA, but not siRNA, may be impaired in cells with low Dicer expression. CONCLUSIONS Our findings indicate that levels of Dicer and Drosha mRNA in ovarian-cancer cells have associations with outcomes in patients with ovarian cancer.


Nature Medicine | 2007

Airway epithelial gene expression in the diagnostic evaluation of smokers with suspect lung cancer

Avrum Spira; Jennifer Beane; Vishal Shah; Katrina Steiling; Gang Liu; Frank Schembri; Sean Gilman; Yves-Martine Dumas; Paul Calner; Paola Sebastiani; Sriram Sridhar; John F. Beamis; Carla Lamb; Timothy Anderson; Norman P. Gerry; Joseph Keane; Marc E. Lenburg; Jerome S. Brody

Lung cancer is the leading cause of death from cancer in the US and the world. The high mortality rate (80–85% within 5 years) results, in part, from a lack of effective tools to diagnose the disease at an early stage. Given that cigarette smoke creates a field of injury throughout the airway, we sought to determine if gene expression in histologically normal large-airway epithelial cells obtained at bronchoscopy from smokers with suspicion of lung cancer could be used as a lung cancer biomarker. Using a training set (n = 77) and gene-expression profiles from Affymetrix HG-U133A microarrays, we identified an 80-gene biomarker that distinguishes smokers with and without lung cancer. We tested the biomarker on an independent test set (n = 52), with an accuracy of 83% (80% sensitive, 84% specific), and on an additional validation set independently obtained from five medical centers (n = 35). Our biomarker had ∼90% sensitivity for stage 1 cancer across all subjects. Combining cytopathology of lower airway cells obtained at bronchoscopy with the biomarker yielded 95% sensitivity and a 95% negative predictive value. These findings indicate that gene expression in cytologically normal large-airway epithelial cells can serve as a lung cancer biomarker, potentially owing to a cancer-specific airway-wide response to cigarette smoke.


Proceedings of the National Academy of Sciences of the United States of America | 2009

MicroRNAs as modulators of smoking-induced gene expression changes in human airway epithelium

Frank Schembri; Sriram Sridhar; Catalina Perdomo; Adam M. Gustafson; Xiaoling Zhang; Ayla Ergun; Jining Lü; Gang Liu; Xiaohui Zhang; Jessica Bowers; Cyrus Vaziri; Kristen Ott; Kelly Sensinger; James J. Collins; Jerome S. Brody; Robert C. Getts; Marc E. Lenburg; Avrum Spira

We have shown that smoking impacts bronchial airway gene expression and that heterogeneity in this response associates with smoking-related disease risk. In this study, we sought to determine whether microRNAs (miRNAs) play a role in regulating the airway gene expression response to smoking. We examined whole-genome miRNA and mRNA expression in bronchial airway epithelium from current and never smokers (n = 20) and found 28 miRNAs to be differentially expressed (P < 0.05) with the majority being down-regulated in smokers. We further identified a number of mRNAs whose expression level is highly inversely correlated with miRNA expression in vivo. Many of these mRNAs contain potential binding sites for the differentially expressed miRNAs in their 3′-untranslated region (UTR) and are themselves affected by smoking. We found that either increasing or decreasing the levels of mir-218 (a miRNA that is strongly affected by smoking) in both primary bronchial epithelial cells and H1299 cells was sufficient to cause a corresponding decrease or increase in the expression of predicted mir-218 mRNA targets, respectively. Further, mir-218 expression is reduced in primary bronchial epithelium exposed to cigarette smoke condensate (CSC), and alteration of mir-218 levels in these cells diminishes the induction of the predicted mir-218 target MAFG in response to CSC. These data indicate that mir-218 levels modulate the airway epithelial gene expression response to cigarette smoke and support a role for miRNAs in regulating host response to environmental toxins.


Trends in Biochemical Sciences | 1996

Signaling phosphate starvation

Marc E. Lenburg; Erin K. O'Shea

Phosphate starvation induces the transcription of several genes involved in phosphate metabolism in the budding yeast Saccharomyces cerevisiae. The signal transduction pathway that mediates this response consists of components that resemble those used to regulate the eukaryotic cell cycle; these include a cyclin-dependent kinase or CDK (Pho85), a cyclin (Pho80) and a CDK inhibitor (Pho81). The possibility that this pathway mediates cell-cycle responses to phosphate starvation is discussed.


Aging Cell | 2015

The Achilles' heel of senescent cells: from transcriptome to senolytic drugs

Yi Zhu; Tamara Tchkonia; Tamar Pirtskhalava; Adam C. Gower; Husheng Ding; Nino Giorgadze; Allyson K. Palmer; Yuji Ikeno; Gene Hubbard; Marc E. Lenburg; Steven P. O'Hara; Nicholas F. LaRusso; Jordan D. Miller; Carolyn M Roos; Grace Verzosa; Nathan K. LeBrasseur; Jonathan D. Wren; Joshua N. Farr; Sundeep Khosla; Michael B. Stout; Sara J. McGowan; Heike Fuhrmann-Stroissnigg; Aditi U. Gurkar; Jing Zhao; Debora Colangelo; Akaitz Dorronsoro; Yuan Yuan Ling; Amira S. Barghouthy; Diana C. Navarro; Tokio Sano

The healthspan of mice is enhanced by killing senescent cells using a transgenic suicide gene. Achieving the same using small molecules would have a tremendous impact on quality of life and the burden of age‐related chronic diseases. Here, we describe the rationale for identification and validation of a new class of drugs termed senolytics, which selectively kill senescent cells. By transcript analysis, we discovered increased expression of pro‐survival networks in senescent cells, consistent with their established resistance to apoptosis. Using siRNA to silence expression of key nodes of this network, including ephrins (EFNB1 or 3), PI3Kδ, p21, BCL‐xL, or plasminogen‐activated inhibitor‐2, killed senescent cells, but not proliferating or quiescent, differentiated cells. Drugs targeting these same factors selectively killed senescent cells. Dasatinib eliminated senescent human fat cell progenitors, while quercetin was more effective against senescent human endothelial cells and mouse BM‐MSCs. The combination of dasatinib and quercetin was effective in eliminating senescent MEFs. In vivo, this combination reduced senescent cell burden in chronologically aged, radiation‐exposed, and progeroid Ercc1−/Δ mice. In old mice, cardiac function and carotid vascular reactivity were improved 5 days after a single dose. Following irradiation of one limb in mice, a single dose led to improved exercise capacity for at least 7 months following drug treatment. Periodic drug administration extended healthspan in Ercc1−/∆ mice, delaying age‐related symptoms and pathology, osteoporosis, and loss of intervertebral disk proteoglycans. These results demonstrate the feasibility of selectively ablating senescent cells and the efficacy of senolytics for alleviating symptoms of frailty and extending healthspan.


Journal of Mammary Gland Biology and Neoplasia | 2010

Epithelial Mesenchymal Transition Traits in Human Breast Cancer Cell Lines Parallel the CD44hi/CD24lo/- Stem Cell Phenotype in Human Breast Cancer

Tony Blick; Honor J. Hugo; Edwin Widodo; Mark Waltham; Cletus Pinto; Sendurai A. Mani; Robert A. Weinberg; Richard M. Neve; Marc E. Lenburg; Erik W. Thompson

We review here the recently emerging relationship between epithelial-mesenchymal transition (EMT) and breast cancer stem cells (BCSC), and provide analyses of published data on human breast cancer cell lines, supporting their utility as a model for the EMT/BCSC state. Genome-wide transcriptional profiling of these cell lines has confirmed the existence of a subgroup with mesenchymal tendencies and enhanced invasive properties (‘Basal B’/Mesenchymal), distinct from subgroups with either predominantly luminal (‘Luminal’) or mixed basal/luminal (‘Basal A’) features (Neve et al. Cancer Cell, 2006). A literature-derived EMT gene signature has shown specific enrichment within the Basal B subgroup of cell lines, consistent with their over-expression of various EMT transcriptional drivers. Basal B cell lines are found to resemble BCSC, being CD44highCD24low. Moreover, gene products that distinguish Basal B from Basal A and Luminal cell lines (Basal B Discriminators) showed close concordance with those that define BCSC isolated from clinical material, as reported by Shipitsin et al. (Cancer Cell, 2007). CD24 mRNA levels varied across Basal B cell lines, correlating with other Basal B Discriminators. Many gene products correlating with CD24 status in Basal B cell lines were also differentially expressed in isolated BCSC. These findings confirm and extend the importance of the cellular product of the EMT with Basal B cell lines, and illustrate the value of analysing these cell lines for new leads that may improve breast cancer outcomes. Gene products specific to Basal B cell lines may serve as tools for the detection, quantification, and analysis of BCSC/EMT attributes.


BMC Cancer | 2003

Previously unidentified changes in renal cell carcinoma gene expression identified by parametric analysis of microarray data

Marc E. Lenburg; Louis S. Liou; Norman P. Gerry; Garrett M. Frampton; Herbert T. Cohen; Michael F. Christman

BackgroundRenal cell carcinoma is a common malignancy that often presents as a metastatic-disease for which there are no effective treatments. To gain insights into the mechanism of renal cell carcinogenesis, a number of genome-wide expression profiling studies have been performed. Surprisingly, there is very poor agreement among these studies as to which genes are differentially regulated. To better understand this lack of agreement we profiled renal cell tumor gene expression using genome-wide microarrays (45,000 probe sets) and compare our analysis to previous microarray studies.MethodsWe hybridized total RNA isolated from renal cell tumors and adjacent normal tissue to Affymetrix U133A and U133B arrays. We removed samples with technical defects and removed probesets that failed to exhibit sequence-specific hybridization in any of the samples. We detected differential gene expression in the resulting dataset with parametric methods and identified keywords that are overrepresented in the differentially expressed genes with the Fisher-exact test.ResultsWe identify 1,234 genes that are more than three-fold changed in renal tumors by t-test, 800 of which have not been previously reported to be altered in renal cell tumors. Of the only 37 genes that have been identified as being differentially expressed in three or more of five previous microarray studies of renal tumor gene expression, our analysis finds 33 of these genes (89%). A key to the sensitivity and power of our analysis is filtering out defective samples and genes that are not reliably detected.ConclusionsThe widespread use of sample-wise voting schemes for detecting differential expression that do not control for false positives likely account for the poor overlap among previous studies. Among the many genes we identified using parametric methods that were not previously reported as being differentially expressed in renal cell tumors are several oncogenes and tumor suppressor genes that likely play important roles in renal cell carcinogenesis. This highlights the need for rigorous statistical approaches in microarray studies.


Science Translational Medicine | 2010

Airway PI3K pathway activation is an early and reversible event in lung cancer development.

Adam M. Gustafson; Raffaella Soldi; Christina Anderlind; Mary Beth Scholand; Xiaohui Zhang; Kendal G Cooper; Darren Walker; Annette McWilliams; Gang Liu; Eva Szabo; Jerome S. Brody; Pierre P. Massion; Marc E. Lenburg; Stephen Lam; Andrea Bild; Avrum Spira

A cancer-associated signaling pathway is reversibly activated in the normal airways of smokers before they develop lung cancer, presenting an opportunity for preventive therapy. An Ounce of Prevention for Lung Cancer Lung cancer takes a terrific toll on humankind. Despite our understanding of the contribution of tobacco smoke, this knowledge has not been able to reverse the global increase in lung cancer incidence. New approaches are needed. Is there a way to tell whether a smoker will develop cancer and, even more important, can we see when this process starts so we can stop it? Work from Gustafson and colleagues has defined a biochemical harbinger of cancer in seemingly normal respiratory tissue that can be reversed before cancer begins. Numerous cellular signaling pathways are deregulated in cancers, such as the Ras, p53, and phosphatidylinositol 3-kinase (PI3K) pathways. A molecular understanding of lung cancer may help to develop effective drugs for deterrence. To see whether they could find a predictor of impending cancer, the authors examined normal respiratory tract tissue from smokers with lung cancer or other abnormalities. By looking for previously determined gene expression signatures for various signaling pathways, they found that one of these pathways—PI3K—was clearly activated above normal values. Moreover, the PI3K pathway was already turned on in smokers with abnormal dysplastic lesions, precursors to lung cancer. Lung cancer cells themselves showed even higher expression of the genes in the PI3K pathway. Concluding that elevated PI3K pathway activity precedes the development of lung cancer, the authors assessed gene expression in tissue from patients with dysplasias who had been successfully treated with myo-inositol, an inhibitor of PI3K, finding effective down-regulation of the PI3K pathway. Treatment of cancers with surgery, radiation, and chemotherapy—or, in some cases, targeted molecular therapies—may be the standard of care at present. But prevention should surely be the ultimate goal. The new tool reported in this article—measurement of PI3K pathway activation—and the demonstration that this is an early and reversible step in lung tumorigenesis are hopeful signs. Although only a subset of smokers develop lung cancer, we cannot determine which smokers are at highest risk for cancer development, nor do we know the signaling pathways altered early in the process of tumorigenesis in these individuals. On the basis of the concept that cigarette smoke creates a molecular field of injury throughout the respiratory tract, this study explores oncogenic pathway deregulation in cytologically normal proximal airway epithelial cells of smokers at risk for lung cancer. We observed a significant increase in a genomic signature of phosphatidylinositol 3-kinase (PI3K) pathway activation in the cytologically normal bronchial airway of smokers with lung cancer and smokers with dysplastic lesions, suggesting that PI3K is activated in the proximal airway before tumorigenesis. Further, PI3K activity is decreased in the airway of high-risk smokers who had significant regression of dysplasia after treatment with the chemopreventive agent myo-inositol, and myo-inositol inhibits the PI3K pathway in vitro. These results suggest that deregulation of the PI3K pathway in the bronchial airway epithelium of smokers is an early, measurable, and reversible event in the development of lung cancer and that genomic profiling of these relatively accessible airway cells may enable personalized approaches to chemoprevention and therapy. Our work further suggests that additional lung cancer chemoprevention trials either targeting the PI3K pathway or measuring airway PI3K activation as an intermediate endpoint are warranted.


Genome Biology | 2007

Reversible and permanent effects of tobacco smoke exposure on airway epithelial gene expression

Jennifer Beane; Paola Sebastiani; Gang Liu; Jerome S. Brody; Marc E. Lenburg; Avrum Spira

BackgroundTobacco use remains the leading preventable cause of death in the US. The risk of dying from smoking-related diseases remains elevated for former smokers years after quitting. The identification of irreversible effects of tobacco smoke on airway gene expression may provide insights into the causes of this elevated risk.ResultsUsing oligonucleotide microarrays, we measured gene expression in large airway epithelial cells obtained via bronchoscopy from never, current, and former smokers (n = 104). Linear models identified 175 genes differentially expressed between current and never smokers, and classified these as irreversible (n = 28), slowly reversible (n = 6), or rapidly reversible (n = 139) based on their expression in former smokers. A greater percentage of irreversible and slowly reversible genes were down-regulated by smoking, suggesting possible mechanisms for persistent changes, such as allelic loss at 16q13. Similarities with airway epithelium gene expression changes caused by other environmental exposures suggest that common mechanisms are involved in the response to tobacco smoke. Finally, using irreversible genes, we built a biomarker of ever exposure to tobacco smoke capable of classifying an independent set of former and current smokers with 81% and 100% accuracy, respectively.ConclusionWe have categorized smoking-related changes in airway gene expression by their degree of reversibility upon smoking cessation. Our findings provide insights into the mechanisms leading to reversible and persistent effects of tobacco smoke that may explain former smokers increased risk for developing tobacco-induced lung disease and provide novel targets for chemoprophylaxis. Airway gene expression may also serve as a sensitive biomarker to identify individuals with past exposure to tobacco smoke.


Cancer Prevention Research | 2011

Characterizing the Impact of Smoking and Lung Cancer on the Airway Transcriptome Using RNA-Seq

Jennifer Beane; Jessica Vick; Frank Schembri; Christina Anderlind; Adam C. Gower; Joshua D. Campbell; Lingqi Luo; Xiaohui Zhang; Ji Xiao; Yuriy O. Alekseyev; Shenglong Wang; Shawn Levy; Pierre P. Massion; Marc E. Lenburg; Avrum Spira

Cigarette smoke creates a molecular field of injury in epithelial cells that line the respiratory tract. We hypothesized that transcriptome sequencing (RNA-Seq) will enhance our understanding of the field of molecular injury in response to tobacco smoke exposure and lung cancer pathogenesis by identifying gene expression differences not interrogated or accurately measured by microarrays. We sequenced the high-molecular-weight fraction of total RNA (>200 nt) from pooled bronchial airway epithelial cell brushings (n = 3 patients per pool) obtained during bronchoscopy from healthy never smoker (NS) and current smoker (S) volunteers and smokers with (C) and without (NC) lung cancer undergoing lung nodule resection surgery. RNA-Seq libraries were prepared using 2 distinct approaches, one capable of capturing non-polyadenylated RNA (the prototype NuGEN Ovation RNA-Seq protocol) and the other designed to measure only polyadenylated RNA (the standard Illumina mRNA-Seq protocol) followed by sequencing generating approximately 29 million 36 nt reads per pool and approximately 22 million 75 nt paired-end reads per pool, respectively. The NuGEN protocol captured additional transcripts not detected by the Illumina protocol at the expense of reduced coverage of polyadenylated transcripts, while longer read lengths and a paired-end sequencing strategy significantly improved the number of reads that could be aligned to the genome. The aligned reads derived from the two complementary protocols were used to define the compendium of genes expressed in the airway epithelium (n = 20,573 genes). Pathways related to the metabolism of xenobiotics by cytochrome P450, retinol metabolism, and oxidoreductase activity were enriched among genes differentially expressed in smokers, whereas chemokine signaling pathways, cytokine–cytokine receptor interactions, and cell adhesion molecules were enriched among genes differentially expressed in smokers with lung cancer. There was a significant correlation between the RNA-Seq gene expression data and Affymetrix microarray data generated from the same samples (P < 0.001); however, the RNA-Seq data detected additional smoking- and cancer-related transcripts whose expression was were either not interrogated by or was not found to be significantly altered when using microarrays, including smoking-related changes in the inflammatory genes S100A8 and S100A9 and cancer-related changes in MUC5AC and secretoglobin (SCGB3A1). Quantitative real-time PCR confirmed differential expression of select genes and non-coding RNAs within individual samples. These results demonstrate that transcriptome sequencing has the potential to provide new insights into the biology of the airway field of injury associated with smoking and lung cancer. The measurement of both coding and non-coding transcripts by RNA-Seq has the potential to help elucidate mechanisms of response to tobacco smoke and to identify additional biomarkers of lung cancer risk and novel targets for chemoprevention. Cancer Prev Res; 4(6); 803–17. ©2011 AACR.

Collaboration


Dive into the Marc E. Lenburg's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dirkje S. Postma

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge