Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Axel Kleidon is active.

Publication


Featured researches published by Axel Kleidon.


Ecological Applications | 2000

Belowground consequences of vegetation change and their treatment in models

Robert B. Jackson; H.J. Schenk; Esteban G. Jobbágy; Josep G. Canadell; G. D. Colello; Robert E. Dickinson; Christopher B. Field; Pierre Friedlingstein; Martin Heimann; K. Hibbard; David W. Kicklighter; Axel Kleidon; Ronald P. Neilson; William J. Parton; Osvaldo E. Sala; Martin T. Sykes

The extent and consequences of global land-cover and land-use change are increasingly apparent. One consequence not so apparent is the altered structure of plants belowground. This paper examines such belowground changes, emphasizing the interaction of altered root distributions with other factors and their treatment in models. Shifts of woody and herbaceous vegetation with deforestation, afforestation, and woody plant en- croachment typically alter the depth and distribution of plant roots, influencing soil nutrients, the water balance, and net primary productivity (NPP). For example, our analysis of global soil data sets shows that the major plant nutrients C, N, P, and K are more shallowly distributed than are Ca, Mg, and Na, but patterns for each element vary with the dominant vegetation type. After controlling for climate, soil C and N are distributed more deeply in arid shrublands than in arid grasslands, and subhumid forests have shallower nutrient dis- tributions than do subhumid grasslands. Consequently, changes in vegetation may influence the distribution of soil carbon and nutrients over time (perhaps decades to centuries). Shifts in the water balance are typically much more rapid. Catchment studies indicate that the water yield decreases 25-40 mm for each 10% increase in tree cover, and increases in transpiration of water taken up by deep roots may account for as much as 50% of observed responses. Because models are increasingly important for predicting the consequences of vegetation change, we discuss the treatment of belowground processes and how different treatments affect model outputs. Whether models are parameterized by biome or plant life form (or neither), use single or multiple soil layers, or include N and water limitation will all affect predicted outcomes. Acknowledging and understanding such differences should help constrain predictions of vegetation change.


Bulletin of the American Meteorological Society | 2001

Modeling root water uptake in hydrological and climate models

Reinder A. Feddes; Holger Hoff; Michael Bruen; Todd E. Dawson; Patricia de Rosnay; Paul A. Dirmeyer; Robert B. Jackson; P. Kabat; Axel Kleidon; Allan Lilly; A. J. Pitman

Abstract From 30 September to 2 October 1999 a workshop was held in Gif–sur–Yvette, France, with the central objective to develop a research strategy for the next 3–5 years, aiming at a systematic description of root functioning, rooting depth, and root distribution for modeling root water uptake from local and regional to global scales. The goal was to link more closely the weather prediction and climate and hydrological models with ecological and plant physiological information in order to improve the understanding of the impact that root functioning has on the hydrological cycle at various scales. The major outcome of the workshop was a number of recommendations, detailed at the end of this paper, on root water uptake parameterization and modeling and on collection of root and soil hydraulic data.


Climatic Change | 2000

A green planet versus a desert world: Estimating the maximum effect of vegetation on the land surface climate

Axel Kleidon; Klaus Fraedrich; Martin Heimann

We quantify the maximum possible influence of vegetation on the global climate by conducting two extreme climate model simulations: in a first simulation (‘desert world’), values representative of a desert are used for the land surface parameters for all non glaciated land regions. At the other extreme, a second simulation is performed (‘green planet’) in which values are used which are most beneficial for the biospheres productivity. Land surface evapotranspiration more than triples in the presence of the ‘green planet’, land precipitation doubles (as a second order effect) and near surface temperatures are lower by as much as 8 K in the seasonal mean resulting from the increase in latent heat flux. The differences can be understood in terms of more absorbed radiation at the surface and increased recycling of water. Most of the increase in net surface radiation originates from less thermal radiative loss and not from increases in solar radiation which would be expected from the albedo change. To illustrate the differences in climatic character and what it would imply for the vegetation type, we use the Köppen climate classification. Both cases lead to similar classifications in the extra tropics and South America indicating that the character of the climate is not substantially altered in these regions. Fundamental changes occur over Africa, South Asia and Australia, where large regions are classified as arid (grassland/desert) climate in the ‘desert world’ simulation while classified as a forest climate in the ‘green planet’ simulation as a result of the strong influence of maximum vegetation on the climate. This implies that these regions are especially sensitive to biosphere-atmosphere interaction.


Naturwissenschaften | 2009

Nonequilibrium thermodynamics and maximum entropy production in the Earth system

Axel Kleidon

The Earth system is maintained in a unique state far from thermodynamic equilibrium, as, for instance, reflected in the high concentration of reactive oxygen in the atmosphere. The myriad of processes that transform energy, that result in the motion of mass in the atmosphere, in oceans, and on land, processes that drive the global water, carbon, and other biogeochemical cycles, all have in common that they are irreversible in their nature. Entropy production is a general consequence of these processes and measures their degree of irreversibility. The proposed principle of maximum entropy production (MEP) states that systems are driven to steady states in which they produce entropy at the maximum possible rate given the prevailing constraints. In this review, the basics of nonequilibrium thermodynamics are described, as well as how these apply to Earth system processes. Applications of the MEP principle are discussed, ranging from the strength of the atmospheric circulation, the hydrological cycle, and biogeochemical cycles to the role that life plays in these processes. Nonequilibrium thermodynamics and the MEP principle have potentially wide-ranging implications for our understanding of Earth system functioning, how it has evolved in the past, and why it is habitable. Entropy production allows us to quantify an objective direction of Earth system change (closer to vs further away from thermodynamic equilibrium, or, equivalently, towards a state of MEP). When a maximum in entropy production is reached, MEP implies that the Earth system reacts to perturbations primarily with negative feedbacks. In conclusion, this nonequilibrium thermodynamic view of the Earth system shows great promise to establish a holistic description of the Earth as one system. This perspective is likely to allow us to better understand and predict its function as one entity, how it has evolved in the past, and how it is modified by human activities in the future.


Philosophical Transactions of the Royal Society B | 2010

Maximum entropy production in environmental and ecological systems.

Axel Kleidon; Yadvinder Malhi; Peter M. Cox

The coupled biosphere–atmosphere system entails a vast range of processes at different scales, from ecosystem exchange fluxes of energy, water and carbon to the processes that drive global biogeochemical cycles, atmospheric composition and, ultimately, the planetary energy balance. These processes are generally complex with numerous interactions and feedbacks, and they are irreversible in their nature, thereby producing entropy. The proposed principle of maximum entropy production (MEP), based on statistical mechanics and information theory, states that thermodynamic processes far from thermodynamic equilibrium will adapt to steady states at which they dissipate energy and produce entropy at the maximum possible rate. This issue focuses on the latest development of applications of MEP to the biosphere–atmosphere system including aspects of the atmospheric circulation, the role of clouds, hydrology, vegetation effects, ecosystem exchange of energy and mass, biogeochemical interactions and the Gaia hypothesis. The examples shown in this special issue demonstrate the potential of MEP to contribute to improved understanding and modelling of the biosphere and the wider Earth system, and also explore limitations and constraints to the application of the MEP principle.


Physics of Life Reviews | 2010

Life, hierarchy, and the thermodynamic machinery of planet Earth

Axel Kleidon

Throughout Earths history, life has increased greatly in abundance, complexity, and diversity. At the same time, it has substantially altered the Earths environment, evolving some of its variables to states further and further away from thermodynamic equilibrium. For instance, concentrations in atmospheric oxygen have increased throughout Earths history, resulting in an increased chemical disequilibrium in the atmosphere as well as an increased redox gradient between the atmosphere and the Earths reducing crust. These trends seem to contradict the second law of thermodynamics, which states for isolated systems that gradients and free energy are dissipated over time, resulting in a state of thermodynamic equilibrium. This seeming contradiction is resolved by considering planet Earth as a coupled, hierarchical and evolving non-equilibrium thermodynamic system that has been substantially altered by the input of free energy generated by photosynthetic life. Here, I present this hierarchical thermodynamic theory of the Earth system. I first present simple considerations to show that thermodynamic variables are driven away from a state of thermodynamic equilibrium by the transfer of power from some other process and that the resulting state of disequilibrium reflects the past net work done on the variable. This is applied to the processes of planet Earth to characterize the generation and transfer of free energy and its dissipation, from radiative gradients to temperature and chemical potential gradients that result in chemical, kinetic, and potential free energy and associated dynamics of the climate system and geochemical cycles. The maximization of power transfer among the processes within this hierarchy yields thermodynamic efficiencies much lower than the Carnot efficiency of equilibrium thermodynamics and is closely related to the proposed principle of Maximum Entropy Production (MEP). The role of life is then discussed as a photochemical process that generates substantial amounts of chemical free energy which essentially skips the limitations and inefficiencies associated with the transfer of power within the thermodynamic hierarchy of the planet. This perspective allows us to view life as being the means to transform many aspects of planet Earth to states even further away from thermodynamic equilibrium than is possible by purely abiotic means. In this perspective pockets of low-entropy life emerge from the overall trend of the Earth system to increase the entropy of the universe at the fastest possible rate. The implications of the theory are discussed regarding fundamental deficiencies in Earth system modeling, applications of the theory to reconstructions of Earth system history, and regarding the role of human activity for the future of the planet.


Geophysical Research Letters | 2008

Thermodynamics and optimality of the water budget on land: A review

Axel Kleidon; S. J. Schymanski

[1] The water balance on land plays a critical role in connecting key hydrological processes with climate and ecology. Over the last few years, several advances have been made in applying thermodynamic and optimality approaches to better describe Earth system processes in general, and the water balance on land in particular. Both concepts relate to the proposed principle of Maximum Entropy Production (MEP), which states that complex systems far from thermodynamic equilibrium organize in a way such that the rate of entropy production-a measure of irreversibility-is maximized in steady state. MEP provides a foundation to understand optimality in hydrology at a fundamental, thermodynamic level that is applicable across a wide range of Earth systems beyond hydrology. This review describes the foundation of the water balance far from thermodynamic equilibrium and potential applications of MEP. Some of the objections to optimality and thermodynamics are discussed as well as its potential implications.


Journal of Climate | 1999

A Green Planet versus a Desert World: Estimating the Effect of Vegetation Extremes on the Atmosphere

Klaus Fraedrich; Axel Kleidon; Frank Lunkeit

Abstract The effect of vegetation extremes on the general circulation is estimated by two atmospheric GCM simulations using global desert and forest boundary conditions over land. The difference between the climates of a “green planet” and a “desert world” is dominated by the changes of the hydrological cycle, which is intensified substantially. Enhanced evapotranspiration over land reduces the near-surface temperatures; enhanced precipitation leads to a warmer mid- and upper troposphere extending from the subtropics (induced by ITCZ, monsoon, and Hadley cell dynamics) to the midlatitudes (over the cyclogenesis area of Northern Hemisphere storm tracks). These regional changes of the surface water and energy balances, and of the atmospheric circulation, have potential impact on the ocean and the atmospheric greenhouse.


Geophysical Research Letters | 1998

Optimised rooting depth and its impacts on the simulated climate of an atmospheric general circulation model

Axel Kleidon; Martin Heimann

Rooting depth determines how much water can be stored in the soil which is accessible to the vegetation for transpiration. Here, we derive a global distribution of rooting depth with an optimisation principle: A simple formulation of Net Primary Production (NPP) is incorporated into a General Circulation Model and then NPP is maximised in respect to rooting depth. The obtained rooting depths are considerably larger to those used in present-day models but are consistent with observations. NPP increases substantially with the use of optimised rooting depths, mainly in tropical regions during the dry season accompanied with enhanced transpiration. The increased flux of latent heat leads to a considerable decrease in 2m air temperature, which leads to a better agreement with observations. We conclude that rooting depth is an important vegetation property, especially in the tropics, and tropical deforestation might have a much larger impact on climate than previously thought.


Archive | 2005

1 Entropy Production by Earth System Processes

Axel Kleidon; Ralph D. Lorenz

Degradation of energy to lower temperatures and the associated production of entropy is a general direction for Earth system processes, ranging from the planetary energy balance, to the global hydrological cycle and the cycling of carbon by Earth’s biosphere. This chapter introduces the application of nonequilibrium thermodynamics to the planetary energy balance of Earth and its neighboring planets. The principles of minimum and maximum entropy production are introduced in the context of Earth system processes. Their applicability to the dynamics of the complex Earth system, such as atmospheric turbulence and the global biotic activity, is outlined. This chapter closes with an overview of the structure of the book and how the chapters relate to the overall theme of non-equilibrium thermodynamics.

Collaboration


Dive into the Axel Kleidon's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James G. Dyke

University of Southampton

View shared research outputs
Top Co-Authors

Avatar

Marc Stieglitz

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge