Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ayami Nakagawa is active.

Publication


Featured researches published by Ayami Nakagawa.


Development | 2013

Dual regulation of ETTIN (ARF3) gene expression by AS1-AS2, which maintains the DNA methylation level, is involved in stabilization of leaf adaxial-abaxial partitioning in Arabidopsis

Mayumi Iwasaki; Hiro Takahashi; Hidekazu Iwakawa; Ayami Nakagawa; Takaaki Ishikawa; Hirokazu Tanaka; Yoko Matsumura; Irena Pekker; Yuval Eshed; Simon Vial-Pradel; Toshiro Ito; Yuichiro Watanabe; Yoshihisa Ueno; Hiroshi Fukazawa; Shoko Kojima; Yasunori Machida; Chiyoko Machida

Leaf primordia are generated at the periphery of the shoot apex, developing into flat symmetric organs with adaxial-abaxial polarity, in which the indeterminate state is repressed. Despite the crucial role of the ASYMMETRIC LEAVES1 (AS1)-AS2 nuclear-protein complex in leaf adaxial-abaxial polarity specification, information on mechanisms controlling their downstream genes has remained elusive. We systematically analyzed transcripts by microarray and chromatin immunoprecipitation assays and performed genetic rescue of as1 and as2 phenotypic abnormalities, which identified a new target gene, ETTIN (ETT)/AUXIN RESPONSE FACTOR3 (ARF3), which encodes an abaxial factor acting downstream of the AS1-AS2 complex. While the AS1-AS2 complex represses ETT by direct binding of AS1 to the ETT promoter, it also indirectly activates miR390- and RDR6-dependent post-transcriptional gene silencing to negatively regulate both ETT and ARF4 activities. Furthermore, AS1-AS2 maintains the status of DNA methylation in the ETT coding region. In agreement, filamentous leaves formed in as1 and as2 plants treated with a DNA methylation inhibitor were rescued by loss of ETT and ARF4 activities. We suggest that negative transcriptional, post-transcriptional and epigenetic regulation of the ARFs by AS1-AS2 is important for stabilizing early leaf partitioning into abaxial and adaxial domains.


Wiley Interdisciplinary Reviews-Developmental Biology | 2015

The complex of ASYMMETRIC LEAVES (AS) proteins plays a central role in antagonistic interactions of genes for leaf polarity specification in Arabidopsis

Chiyoko Machida; Ayami Nakagawa; Shoko Kojima; Hiro Takahashi; Yasunori Machida

Leaf primordia are born around meristem‐containing stem cells at shoot apices, grow along three axes (proximal–distal, adaxial–abaxial, medial–lateral), and develop into flat symmetric leaves with adaxial–abaxial polarity. Axis development and polarity specification of Arabidopsis leaves require a network of genes for transcription factor‐like proteins and small RNAs. Here, we summarize present understandings of adaxial‐specific genes, ASYMMETRIC LEAVES1 (AS1) and AS2. Their complex (AS1–AS2) functions in the regulation of the proximal–distal leaf length by directly repressing class 1 KNOX homeobox genes (BP, KNAT2) that are expressed in the meristem periphery below leaf primordia. Adaxial–abaxial polarity specification involves antagonistic interaction of adaxial and abaxial genes including AS1 and AS2 for the development of two respective domains. AS1–AS2 directly represses the abaxial gene ETTIN/AUXIN RESPONSE FACTOR3 (ETT/ARF3) and indirectly represses ETT/ARF3 and ARF4 through tasiR‐ARF. Modifier mutations have been identified that abolish adaxialization and enhance the defect in the proximal–distal patterning in as1 and as2. AS1–AS2 and its modifiers synergistically repress both ARFs and class 1 KNOXs. Repression of ARFs is critical for establishing adaxial–abaxial polarity. On the other hand, abaxial factors KANADI1 (KAN1) and KAN2 directly repress AS2 expression. These data delineate a molecular framework for antagonistic gene interactions among adaxial factors, AS1, AS2, and their modifiers, and the abaxial factors ARFs as key regulators in the establishment of adaxial–abaxial polarity. Possible AS1–AS2 epigenetic repression and activities downstream of ARFs are discussed. WIREs Dev Biol 2015, 4:655–671. doi: 10.1002/wdev.196


Journal of Bioscience and Bioengineering | 2012

Discovery of novel rules for G-quadruplex-forming sequences in plants by using bioinformatics methods.

Hiro Takahashi; Ayami Nakagawa; Shoko Kojima; Anna Takahashi; Byung-Yoon Cha; Je-Tae Woo; Kazuo Nagai; Yasunori Machida; Chiyoko Machida

The G-quadruplex is one of the most frequently studied secondary DNA structures and consists of 4 guanine residues that interact through Watson-Crick and Hoogsteen pairing. The G-quadruplex formation is thought to be a molecular switch for gene expression. Genome-wide analyses of G-quadruplexes have been published for many species; however, only one genome-wide analysis of G-quadruplexes in plants has been reported. Here, we propose a new approach involving a two-step procedure for identifying G-quadruplex-forming sequences (potential G4 DNA motif regions: G4MRs) and classifying positional relationships between G4MRs and genes. By using this approach, we exhaustively searched for G4MRs in the whole genomes of 8 species: Arabidopsis thaliana, Oryza sativa subsp. japonica, Populus trichocarpa, Vitis vinifera, Homo sapiens, Danio rerio, Drosophila melanogaster, and Caenorhabditis elegans. We classified genes on the basis of their positional relationships to their proximal G4MRs. We identified novel rules for G4MRs in plants, such as G4MR-enrichment in the template strands at transcription start sites (TSSs). Next, we focused on the template strands of TSSs and conducted gene ontology (GO) analysis of genes proximal to G4MRs. We identified GO terms such as chloroplast and nucleosome (or histone) in O. sativa. Although these terms were strongly associated in O. sativa, weak associations were identified in other plants. These results will be helpful for elucidating the functional roles of G4 DNA.


Biology Open | 2016

A genetic link between epigenetic repressor AS1-AS2 and a putative small subunit processome in leaf polarity establishment of Arabidopsis.

Yoko Matsumura; Iwai Ohbayashi; Hiro Takahashi; Shoko Kojima; Nanako Ishibashi; Sumie Keta; Ayami Nakagawa; Rika Hayashi; Julio Sáez-Vásquez; Manuel Echeverria; Munetaka Sugiyama; Kenzo Nakamura; Chiyoko Machida; Yasunori Machida

ABSTRACT Although the DEAD-box RNA helicase family is ubiquitous in eukaryotes, its developmental role remains unelucidated. Here, we report that cooperative action between the Arabidopsis nucleolar protein RH10, an ortholog of human DEAD-box RNA helicase DDX47, and the epigenetic repressor complex of ASYMMETRIC-LEAVES1 (AS1) and AS2 (AS1-AS2) is critical to repress abaxial (ventral) genes ETT/ARF3 and ARF4, which leads to adaxial (dorsal) development in leaf primordia at shoot apices. Double mutations of rh10-1 and as2 (or as1) synergistically up-regulated the abaxial genes, which generated abaxialized filamentous leaves with loss of the adaxial domain. DDX47 is part of the small subunit processome (SSUP) that mediates rRNA biogenesis. In rh10-1 we found various defects in SSUP-related events, such as: accumulation of 35S/33S rRNA precursors; reduction in the 18S/25S ratio; and nucleolar hypertrophy. Double mutants of as2 with mutations of genes that encode other candidate SSUP-related components such as nucleolin and putative rRNA methyltransferase exhibited similar synergistic defects caused by up-regulation of ETT/ARF3 and ARF4. These results suggest a tight link between putative SSUP and AS1-AS2 in repression of the abaxial-determining genes for cell fate decisions for adaxial development. Summary: This paper reports the importance of cooperative action between the nucleus-localized epigenetic repressor and the nucleolus-localized proteins involved in ribosomal RNA processing for polarity establishment of Arabidopsis leaves.


Plant Molecular Biology | 2012

Berberine enhances defects in the establishment of leaf polarity in asymmetric leaves1 and asymmetric leaves2 of Arabidopsis thaliana

Ayami Nakagawa; Hiro Takahashi; Shoko Kojima; Nobuo Sato; Kazuomi Ohga; Byung Yoon Cha; Je-Tae Woo; Kazuo Nagai; Gorou Horiguchi; Hirokazu Tsukaya; Yasunori Machida; Chiyoko Machida

Leaves develop as flat lateral organs from the indeterminate shoot apical meristem. The establishment of polarity along three-dimensional axes, proximal–distal, medial–lateral, and adaxial–abaxial axes, is crucial for the growth of normal leaves. The mutations of ASYMMETRIC LEAVES1 (AS1) and AS2 of Arabidopsis thaliana cause defects in repression of the indeterminate state and the establishment of axis formation in leaves. Although many mutations have been identified that enhance the adaxial–abaxial polarity defects of as1 and as2 mutants, the roles of the causative genes in leaf development are still unknown. In this study, we found that wild-type plants treated with berberine produced pointed leaves, which are often observed in the single mutants that enhance phenotypes of as1 and as2 mutants. The berberine-treated as1 and as2 mutants formed abaxialized filamentous leaves. Berberine, an isoquinoline alkaloid compound naturally produced in various plant sources, has a growth inhibitory effect on plants that do not produce berberine. We further showed that transcript levels of meristem-specific class 1 KNOX homeobox genes and abaxial determinant genes were increased in berberine-treated as1 and as2. Berberine treated plants carrying double mutations of AS2 and the large subunit ribosomal protein gene RPL5B showed more severe defects in polarity than did the as2 single mutant plants. We suggest that berberine inhibits (a) factor(s) that might be required for leaf adaxial cell differentiation through a pathway independent of AS1 and AS2. Multiple pathways might play important roles in the formation of flat symmetric leaves.


Plant Biotechnology | 2018

A genetic link between epigenetic repressor AS1–AS2 and DNA replication factors in establishment of adaxial–abaxial leaf polarity of Arabidopsis

Toan Quy Luong; Sumie Keta; Toshiharu Asai; Shoko Kojima; Ayami Nakagawa; José Luis Micol; Shitou Xia; Yasunori Machida; Chiyoko Machida


The Japanese Biochemical Society/The Molecular Biology Society of Japan | 2017

Repression of CDK inhibitor by epigenetic factor AS1-AS2 is a crucial step in leaf polarity establishment and lateral cell division in Arabidopsis thaliana

Chiyoko Machida; Ayami Nakagawa; Simon Vial-Pradel; Hiro Takahashi; Tamami Nishimoto; Yasunori Machida; Shoko Kojima


The Molecular Biology Society of Japan | 2016

Analysis of roles of AS1-AS2 in adaxial-abaxial differentiation and cell cycle progression in Arabidopsis thaliana leaves

Ayami Nakagawa; Hiro Takahashi; Simon Vial-Pradel; Shoko Kojima; Yasunori Machida; Chiyoko Machida


The Molecular Biology Society of Japan | 2016

Epigenetic regulator AS1-AS2 and modifiers control the level of DNA methylation of the ETTIN locus in establishment of leaf adaxial-abaxial polarity in Arabidopsis thaliana

Simon Vial-Pradel; Ayami Nakagawa; Shoko Kojima; Yasunori Machida; Chiyoko Machida


The Molecular Biology Society of Japan | 2016

Development of data mining of expression analysis data on proving molecular mechanisms of leaf development of Arabidopsis thaliana

Hiro Takahashi; Ayami Nakagawa; Takuma Ito; Shoko Kojima; Yasunori Machida; Chiyoko Machida

Collaboration


Dive into the Ayami Nakagawa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge