Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ayato Takada is active.

Publication


Featured researches published by Ayato Takada.


Nature | 2005

Avian flu: isolation of drug-resistant H5N1 virus.

Q. Mai Le; Maki Kiso; Kazuhiko Someya; Yuko Sakai; T. Hien Nguyen; Khan H. L. Nguyen; N. Dinh Pham; Ha H. Ngyen; S. Yamada; Yukiko Muramoto; Taisuke Horimoto; Ayato Takada; Hideo Goto; Takashi Suzuki; Yasuo Suzuki; Yoshihiro Kawaoka

The persistence of H5N1 avian influenza viruses in many Asian countries and their ability to cause fatal infections in humans have raised serious concerns about a global flu pandemic. Here we report the isolation of an H5N1 virus from a Vietnamese girl that is resistant to the drug oseltamivir, which is an inhibitor of the viral enzyme neuraminidase and is currently used for protection against and treatment of influenza. Further investigation is necessary to determine the prevalence of oseltamivir-resistant H5N1 viruses among patients treated with this drug.


Nature | 2004

Enhanced virulence of influenza A viruses with the haemagglutinin of the 1918 pandemic virus.

Darwyn Kobasa; Ayato Takada; Kyoko Shinya; Masato Hatta; Peter Halfmann; Steven Theriault; Hiroshi Suzuki; Hidekazu Nishimura; Keiko Mitamura; Norio Sugaya; Taichi Usui; Takeomi Murata; Yasuko Maeda; Shinji Watanabe; M. Suresh; Takashi Suzuki; Yasuo Suzuki; Heinz Feldmann; Yoshihiro Kawaoka

The ‘Spanish’ influenza pandemic of 1918–19 was the most devastating outbreak of infectious disease in recorded history. At least 20 million people died from their illness, which was characterized by an unusually severe and rapid clinical course. The complete sequencing of several genes of the 1918 influenza virus has made it possible to study the functions of the proteins encoded by these genes in viruses generated by reverse genetics, a technique that permits the generation of infectious viruses entirely from cloned complementary DNA. Thus, to identify properties of the 1918 pandemic influenza A strain that might be related to its extraordinary virulence, viruses were produced containing the viral haemagglutinin (HA) and neuraminidase (NA) genes of the 1918 strain. The HA of this strain supports the pathogenicity of a mouse-adapted virus in this animal. Here we demonstrate that the HA of the 1918 virus confers enhanced pathogenicity in mice to recent human viruses that are otherwise non-pathogenic in this host. Moreover, these highly virulent recombinant viruses expressing the 1918 viral HA could infect the entire lung and induce high levels of macrophage-derived chemokines and cytokines, which resulted in infiltration of inflammatory cells and severe haemorrhage, hallmarks of the illness produced during the original pandemic.


Nature | 2006

Architecture of ribonucleoprotein complexes in influenza A virus particles

Takeshi Noda; Hiroshi Sagara; Albert Yen; Ayato Takada; Hiroshi Kida; R. Holland Cheng; Yoshihiro Kawaoka

In viruses, as in eukaryotes, elaborate mechanisms have evolved to protect the genome and to ensure its timely replication and reliable transmission to progeny. Influenza A viruses are enveloped, spherical or filamentous structures, ranging from 80 to 120 nm in diameter. Inside each envelope is a viral genome consisting of eight single-stranded negative-sense RNA segments of 890 to 2,341 nucleotides each. These segments are associated with nucleoprotein and three polymerase subunits, designated PA, PB1 and PB2; the resultant ribonucleoprotein complexes (RNPs) resemble a twisted rod (10–15 nm in width and 30–120 nm in length) that is folded back and coiled on itself. Late in viral infection, newly synthesized RNPs are transported from the nucleus to the plasma membrane, where they are incorporated into progeny virions capable of infecting other cells. Here we show, by transmission electron microscopy of serially sectioned virions, that the RNPs of influenza A virus are organized in a distinct pattern (seven segments of different lengths surrounding a central segment). The individual RNPs are suspended from the interior of the viral envelope at the distal end of the budding virion and are oriented perpendicular to the budding tip. This finding argues against random incorporation of RNPs into virions, supporting instead a model in which each segment contains specific incorporation signals that enable the RNPs to be recruited and packaged as a complete set. A selective mechanism of RNP incorporation into virions and the unique organization of the eight RNP segments may be crucial to maintaining the integrity of the viral genome during repeated cycles of replication.


Journal of Virology | 2002

Ebola Virus VP40 Drives the Formation of Virus-Like Filamentous Particles Along with GP

Takeshi Noda; Hiroshi Sagara; Emiko Suzuki; Ayato Takada; Hiroshi Kida; Yoshihiro Kawaoka

ABSTRACT Using biochemical assays, it has been demonstrated that expression of Ebola virus VP40 alone in mammalian cells induced production of particles with a density similar to that of virions. To determine the morphological properties of these particles, cells expressing VP40 and the particles released from the cells were examined by electron microscopy. VP40 induced budding from the plasma membrane of filamentous particles, which differed in length but had uniform diameters of approximately 65 nm. When the Ebola virus glycoprotein (GP) responsible for receptor binding and membrane fusion was expressed in cells, we found pleomorphic particles budding from the plasma membrane. By contrast, when GP was coexpressed with VP40, GP was found on the filamentous particles induced by VP40. These results demonstrated the central role of VP40 in formation of the filamentous structure of Ebola virions and may suggest an interaction between VP40 and GP in morphogenesis.


Archives of Virology | 1995

Perpetuation of influenza A viruses in Alaskan waterfowl reservoirs

Toshiaki Ito; Katsunori Okazaki; Yoshihiro Kawaoka; Ayato Takada; Robert G. Webster; Hiroshi Kida

SummaryTo provide information on the mechanism of perpetuation of influenza viruses among waterfowl reservoirs in nature, virological surveillance was carried out in Alaska during their breeding season in summer from 1991 to 1994. Influenza viruses were isolated mainly from fecal samples of dabbling ducks in their nesting places in central Alaska. The numbers of subtypes of 108 influenza virus isolates were 1 H2N3, 37 H3N8, 55 H4N6, 1 H7N3, 1 H8N2, 1 H10N2, 11 H10N7, and H10N9. Influenza viruses were also isolated from water samples of the lakes where they nest. Even in September of 1994 when the most ducks had left for migration to south, viruses were still isolated from the lake water. Phylogenetic analysis of the NP genes of the representative isolates showed that they belong to the North American lineage of avian influenza viruses, suggesting that the majority of the waterfowls breeding in central Alaska migrate to North America and not to Asia. The present results support the notion that influenza viruses have been maintained in waterfowl population by water-borne transmission and revealed the mechanism of year-by-year perpetuation of the viruses in the lakes where they breed.


Archives of Virology | 2016

Taxonomy of the order Mononegavirales: update 2016

Claudio L. Afonso; Gaya K. Amarasinghe; Krisztián Bányai; Yīmíng Bào; Christopher F. Basler; Sina Bavari; Nicolás Bejerman; Kim R. Blasdell; François Xavier Briand; Thomas Briese; Alexander Bukreyev; Charles H. Calisher; Kartik Chandran; Jiāsēn Chéng; Anna N. Clawson; Peter L. Collins; Ralf G. Dietzgen; Olga Dolnik; Leslie L. Domier; Ralf Dürrwald; John M. Dye; Andrew J. Easton; Hideki Ebihara; Szilvia L. Farkas; Juliana Freitas-Astúa; Pierre Formenty; Ron A. M. Fouchier; Yànpíng Fù; Elodie Ghedin; Michael M. Goodin

In 2016, the order Mononegavirales was emended through the addition of two new families (Mymonaviridae and Sunviridae), the elevation of the paramyxoviral subfamily Pneumovirinae to family status (Pneumoviridae), the addition of five free-floating genera (Anphevirus, Arlivirus, Chengtivirus, Crustavirus, and Wastrivirus), and several other changes at the genus and species levels. This article presents the updated taxonomy of the order Mononegavirales as now accepted by the International Committee on Taxonomy of Viruses (ICTV).


Journal of Virology | 2004

Human Macrophage C-Type Lectin Specific for Galactose and N-Acetylgalactosamine Promotes Filovirus Entry

Ayato Takada; Kouki Fujioka; Makoto Tsuiji; Akiko Morikawa; Nobuaki Higashi; Hideki Ebihara; Darwyn Kobasa; Heinz Feldmann; Tatsuro Irimura; Yoshihiro Kawaoka

ABSTRACT Filoviruses cause lethal hemorrhagic disease in humans and nonhuman primates. An initial target of filovirus infection is the mononuclear phagocytic cell. Calcium-dependent (C-type) lectins such as dendritic cell- or liver/lymph node-specific ICAM-3 grabbing nonintegrin (DC-SIGN or L-SIGN, respectively), as well as the hepatic asialoglycoprotein receptor, bind to Ebola or Marburg virus glycoprotein (GP) and enhance the infectivity of these viruses in vitro. Here, we demonstrate that a recently identified human macrophage galactose- and N-acetylgalactosamine-specific C-type lectin (hMGL), whose ligand specificity differs from DC-SIGN and L-SIGN, also enhances the infectivity of filoviruses. This enhancement was substantially weaker for the Reston and Marburg viruses than for the highly pathogenic Zaire virus. We also show that the heavily glycosylated, mucin-like domain on the filovirus GP is required for efficient interaction with this lectin. Furthermore, hMGL, like DC-SIGN and L-SIGN, is present on cells known to be major targets of filoviruses (i.e., macrophages and dendritic cells), suggesting a role for these C-type lectins in viral replication in vivo. We propose that filoviruses use different C-type lectins to gain cellular entry, depending on the cell type, and promote efficient viral replication.


Journal of Virology | 2006

Tyro3 Family-Mediated Cell Entry of Ebola and Marburg Viruses

Masayuki Shimojima; Ayato Takada; Hideki Ebihara; Gabriele Neumann; Kouki Fujioka; Tatsuro Irimura; Steven J.M. Jones; Heinz Feldmann; Yoshihiro Kawaoka

ABSTRACT Filoviruses, represented by the genera Ebolavirus and Marburgvirus, cause a lethal hemorrhagic fever in humans and in nonhuman primates. Although filovirus can replicate in various tissues or cell types in these animals, the molecular mechanisms of its broad tropism remain poorly understood. Here we show the involvement of members of the Tyro3 receptor tyrosine kinase family—Axl, Dtk, and Mer—in cell entry of filoviruses. Ectopic expression of these family members in lymphoid cells, which otherwise are highly resistant to filovirus infection, enhanced infection by pseudotype viruses carrying filovirus glycoproteins on their envelopes. This enhancement was reduced by antibodies to Tyro3 family members, Gas6 ligand, or soluble ectodomains of the members. Live Ebola viruses infected both Axl- and Dtk-expressing cells more efficiently than control cells. Antibody to Axl inhibited infection of pseudotype viruses in a number of Axl-positive cell lines. These results implicate each Tyro3 family member as a cell entry factor in filovirus infection.


PLOS Pathogens | 2009

Cross-Protective Potential of a Novel Monoclonal Antibody Directed against Antigenic Site B of the Hemagglutinin of Influenza A Viruses

Reiko Yoshida; Manabu Igarashi; Hiroichi Ozaki; Noriko Kishida; Daisuke Tomabechi; Hiroshi Kida; Kimihito Ito; Ayato Takada

The hemagglutinin (HA) of influenza A viruses has been classified into sixteen distinct subtypes (H1–H16) to date. The HA subtypes of influenza A viruses are principally defined as serotypes determined by neutralization or hemagglutination inhibition tests using polyclonal antisera to the respective HA subtypes, which have little cross-reactivity to the other HA subtypes. Thus, it is generally believed that the neutralizing antibodies are not broadly cross-reactive among HA subtypes. In this study, we generated a novel monoclonal antibody (MAb) specific to HA, designated MAb S139/1, which showed heterosubtypic cross-reactive neutralization and hemagglutination inhibition of influenza A viruses. This MAb was found to have broad reactivity to many other viruses (H1, H2, H3, H5, H9, and H13 subtypes) in enzyme-linked immunosorbent assays. We further found that MAb S139/1 showed neutralization and hemagglutination-inhibition activities against particular strains of H1, H2, H3, and H13 subtypes of influenza A viruses. Mutant viruses that escaped neutralization by MAb S139/1 were selected from the A/Aichi/2/68 (H3N2), A/Adachi/2/57 (H2N2), and A/WSN/33 (H1N1) strains, and sequence analysis of the HA genes of these escape mutants revealed amino acid substitutions at positions 156, 158, and 193 (H3 numbering). A molecular modeling study showed that these amino acids were located on the globular head of the HA and formed a novel conformational epitope adjacent to the receptor-binding domain of HA. Furthermore, passive immunization of mice with MAb S139/1 provided heterosubtypic protection. These results demonstrate that MAb S139/1 binds to a common antigenic site shared among a variety of HA subtypes and neutralizes viral infectivity in vitro and in vivo by affecting viral attachment to cells. The present study supports the notion that cross-reactive antibodies play some roles in heterosubtypic immunity against influenza A virus infection, and underscores the potential therapeutic utility of cross-reactive antibodies against influenza.


Vaccine | 2003

Intranasal immunization with formalin-inactivated virus vaccine induces a broad spectrum of heterosubtypic immunity against influenza A virus infection in mice.

Ayato Takada; Sachiko Matsushita; Ai Ninomiya; Yoshihiro Kawaoka; Hiroshi Kida

It has been known that influenza A virus infection induces a cross-protective immunity against infection by viruses with different subtypes of viral envelope proteins, hemagglutinin (HA) and neuraminidase (NA). This heterosubtypic immunity is generally mediated by cytotoxic T lymphocytes (CTL) reactive to specific epitopes in the viral internal proteins, such as nucleoprotein and matrix protein. By contrast, immunization with inactivated virus antigens has been thought to be unable to generate heterosubtypic immunity, since inactivated antigens do not usually induce CTL responses. However, we show that intranasal immunization with formalin-inactivated intact virus, but not ether-split vaccines, induced a broad spectrum of heterosubtypic protective immunity in mice. The protection may be mediated by the mucosal immune response, most likely secretory IgA antibodies to the viral proteins. This approach may overcome limitations in the efficacy of inactivated influenza vaccines and confer potent immunity to humans against viruses with new pandemic potential.

Collaboration


Dive into the Ayato Takada's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yoshihiro Kawaoka

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Heinz Feldmann

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Katsunori Okazaki

Health Sciences University of Hokkaido

View shared research outputs
Researchain Logo
Decentralizing Knowledge