Ayce Yesilaltay
Massachusetts Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ayce Yesilaltay.
Journal of Biological Chemistry | 2003
Olivier Kocher; Ayce Yesilaltay; Christine Cirovic; Rinku Pal; Attilio Rigotti; Monty Krieger
PDZK1, a multi-PDZ domain containing adaptor protein, interacts with various membrane proteins, including the high density lipoprotein (HDL) receptor scavenger receptor class B type I (SR-BI). Here we show that PDZK1 controls in a tissue-specific and post-transcriptional fashion the expression of SR-BI in vivo. SR-BI protein expression in PDZK1 knock-out (KO) mice was reduced by 95% in the liver, 50% in the proximal intestine, and not affected in steroidogenic organs (adrenal, ovary, and testis). Thus, PDZK1 joins a growing list of adaptors that control tissue-specific activity of cell surface receptors. Hepatic expression of SR-BII, a minor splice variant with an alternative C-terminal cytoplasmic domain, was not affected in PDZK1 KO mice, suggesting that binding of PDZK1 to SR-BI is required for controlling hepatic SR-BI expression. The loss of hepatic SR-BI was the likely cause of the elevation in plasma total and HDL cholesterol and the increase in HDL particle size in PDZK1 KO mice, phenotypes similar to those observed in SR-BI KO mice. PDZK1 KO mice differed from SR-BI KO mice in that the ratio of unesterified to total plasma cholesterol was normal, females were fertile, and cholesteryl ester stores in steroidogenic organs were essentially unaffected. These differences may be due to nearly normal extrahepatic expression of SR-BI in PDZK1 KO mice. The PDZK1-dependent regulation of hepatic SR-BI and, thus, lipoprotein metabolism supports the proposal that this adaptor may represent a new target for therapeutic intervention in cardiovascular disease.
Circulation Research | 2008
Janka Kisucka; Anil K. Chauhan; Ian S. Patten; Ayce Yesilaltay; Carola A. Neumann; Richard A. Van Etten; Monty Krieger; Denisa D. Wagner
The peroxiredoxin (Prdx) family of antioxidant enzymes uses redox-active cysteines to reduce peroxides, lipid hydroperoxides, and peroxynitrites. Prdx1 is known to be important to protect red blood cells against reactive oxygen species and in tumor prevention. In this study, the role of Prdx1 in inflammation, thrombosis, and atherosclerosis was investigated. Using intravital microscopy, we showed that the number of leukocytes rolling per minute in unstimulated veins was increased by 2.5-fold in Prdx1−/− compared to Prdx1+/+ mice. In Prdx1−/− mice, 50% of leukocytes rolled at a velocity <10 &mgr;m/sec compared with 10% in Prdx1+/+ mice, suggesting that adhesion molecule density on the endothelium may have been increased by Prdx1 deficiency. Indeed, endothelial P-selectin, soluble P-selectin, and von Willebrand factor in plasma were increased in Prdx1−/− mice compared to Prdx1+/+ mice, indicating elevated Weibel–Palade body release. In contrast to this excessive endothelial activation, Prdx1−/− platelets showed no sign of hyperreactivity, and their aggregation both in vitro and in vivo was normal. We also examined the role of Prdx1 in the apoE−/− murine spontaneous model of atherosclerosis. Prdx1−/−/apoE−/− mice fed normal chow developed larger, more macrophage-rich aortic sinus lesions than Prdx1+/+/apoE−/− mice, despite similar amounts and size distributions of cholesterol in their plasma lipoproteins. Thus, Prdx1 protects against excessive endothelial activation and atherosclerosis, and the Prdx1−/− mice could serve as an animal model susceptible to chronic inflammation.
Development | 2006
Michael Y. Choi; Anthony I. Romer; Michael Hu; Maina Lepourcelet; Ambili Mechoor; Ayce Yesilaltay; Monty Krieger; Paul A. Gray; Ramesh A. Shivdasani
Tissue-restricted transcription factors (TFs), which confer specialized cellular properties, are usually identified through sequence homology or cis-element analysis of lineage-specific genes; conventional modes of mRNA profiling often fail to report non-abundant TF transcripts. We evaluated the dynamic expression during mouse gut organogenesis of 1381 transcripts, covering nearly every known and predicted TF, and documented the expression of approximately 1000 TF genes in gastrointestinal development. Despite distinctive structures and functions, the stomach and intestine exhibit limited differences in TF genes. Among differentially expressed transcripts, a few are virtually restricted to the digestive tract, including Nr2e3, previously regarded as a photoreceptor-specific product. TFs that are enriched in digestive organs commonly serve essential tissue-specific functions, hence justifying a search for other tissue-restricted TFs. Computational data mining and experimental investigation focused interest on a novel homeobox TF, Isx, which appears selectively in gut epithelium and mirrors expression of the intestinal TF Cdx2. Isx-deficient mice carry a specific defect in intestinal gene expression: dysregulation of the high density lipoprotein (HDL) receptor and cholesterol transporter scavenger receptor class B, type I (Scarb1). Thus, integration of developmental gene expression with biological assessment, as described here for TFs, represents a powerful tool to investigate control of tissue differentiation.
Arteriosclerosis, Thrombosis, and Vascular Biology | 2008
Vandana S. Dole; Jana Matuskova; Eliza Vasile; Ayce Yesilaltay; Wolfgang Bergmeier; Michael Bernimoulin; Denisa D. Wagner; Monty Krieger
Objective—High-density lipoprotein (HDL) receptor, scavenger receptor class B, type I (SR-BI), mediated cellular uptake of lipoprotein cholesterol controls HDL structure and plasma HDL and biliary cholesterol levels. In SR-BI knockout (KO) mice, an unusually high plasma unesterified-to-total cholesterol ratio (UC:TC) and abnormally large HDL particles apparently contribute to pathology, including female infertility, susceptibility to atherosclerosis and coronary heart disease, and anemia. Here we examined the influence of SR-BI deficiency on platelets. Methods and Results—The high plasma UC:TC ratio in SR-BI KO mice was correlated with platelet abnormalities, including high cholesterol content, abnormal morphologies, high clearance rates, and thrombocytopenia. One day after platelets from wild-type mice were infused into SR-BI KO mice, they exhibited abnormally high cholesterol content and clearance rates similar to those of endogenous platelets. Platelets from SR-BI KO mice exhibited in vitro a blunted aggregation response to the agonist ADP but a normal response to PAR4. Conclusions—In SR-BI KO mice abnormal circulating lipoproteins, particularly their high UC:TC ratio—rather than the absence of SR-BI in platelets themselves—induce defects in platelet structure and clearance, together with a mild defect in function.
Blood | 2009
Janka Kisucka; Anil K. Chauhan; Bing-Qiao Zhao; Ian S. Patten; Ayce Yesilaltay; Monty Krieger; Denisa D. Wagner
Cerebrovascular and cardiovascular diseases are a major cause of morbidity and mortality. Soluble P-selectin (sP-selectin) is a biomarker for platelet/endothelial activation and is considered a risk factor for vascular disease. sP-selectin enhances procoagulant activity by inducing leukocyte-derived microparticle production and promotes activation of leukocyte integrins. However, it is not known whether it directly contributes to vascular complications. We investigated the effect of increased levels of sP-selectin on blood-brain barrier (BBB) function, stroke outcome, and atherosclerosis by comparing wild-type mice with P-sel(DeltaCT/DeltaCT) mice in which the endogenous P-selectin gene was replaced with a mutant that produces abnormally high plasma levels of sP-selectin. P-sel(DeltaCT/DeltaCT) mice presented several abnormalities, including (1) higher BBB permeability, with 25% of the animals showing differential permeability between the right and left hemispheres; (2) altered social behavior with increased aggression; (3) larger infarcts in the middle cerebral artery occlusion ischemic stroke model; and (4) increased susceptibility to atherosclerotic, macrophage-rich lesion development in both male and female mice on the apoE(-/-) genetic background. Thus, elevated sP-selectin is not only a biomarker for vascular disease, but also may contribute directly to atherosclerosis and cerebrovascular complications.
Journal of Biological Chemistry | 2006
Ayce Yesilaltay; Olivier Kocher; Rinku Pal; Andrea Leiva; Quiñones; Attilio Rigotti; Monty Krieger
PDZK1 is a multi-PDZ domain-containing adaptor protein that binds to the C terminus of the high density lipoprotein receptor, scavenger receptor, class B, type I (SR-BI), and controls the posttranscriptional, tissue-specific expression of this lipoprotein receptor. In the absence of PDZK1 (PDZK1(-/-) mice), murine hepatic SR-BI protein levels are very low (<5% of control). As a consequence, abnormal plasma lipoprotein metabolism (∼1.5-1.7-fold increased total plasma cholesterol carried in both normal size and abnormally large high density lipoprotein particles) resembles, but is not as severely defective as, that in SR-BI(-/-) mice. Here we show that the total plasma cholesterol levels and size distribution of lipoproteins are virtually identical in SR-BI(-/-) and SR-BI(-/-)/PDZK1(-/-) mice, indicating that most, if not all of the effects of PDZK1 on lipoprotein metabolism are likely because of the effects of PDZK1 on SR-BI. Hepatic overexpression of wild-type SR-BI in PDZK1(-/-) mice restored near or greater than normal levels of cell surface-expressed, functional SR-BI protein levels in the livers of SR-BI(-/-)/PDZK1(-/-) mice and consequently restored apparently normal lipoprotein metabolism in the absence of PDZK1. Thus, PDZK1 is important for maintaining adequate steady state levels of SR-BI in the liver but is not essential for cell surface expression or function of hepatic SR-BI.
Current Opinion in Lipidology | 2005
Ayce Yesilaltay; Olivier Kocher; Attilio Rigotti; Monty Krieger
Purpose of review A novel mechanism for the regulation of lipoprotein receptor activity is providing new insights into the control of lipid metabolism. The tissue-specific adaptors ARH (autosomal recessive hypercholesterolemia) and PDZK1 [where PDZ derives from postsynaptic density protein (PSD-95)/Drosophila discs-large (dlg)/tight-junction protein (ZO1)] have been shown to control the activities of distinct types of lipoprotein receptors in a posttranscriptional fashion, significantly affecting overall lipoprotein metabolism. This review will focus on one of these lipoprotein receptor-adaptor pairs, the high-density lipoprotein receptor SR-BI (scavenger receptor class B, type I) and its adaptor PDZK1. Recent findings The PDZ domain-containing adaptor protein PDZK1 has been shown to bind to and control the activity of the high-density lipoprotein receptor SR-BI via a tissue-specific posttranscriptional mechanism. Mice deficient in PDZK1 have elevated plasma cholesterol levels due to the virtually complete hepatic ablation of SR-BI, implicating PDZK1 as a novel regulator of high-density lipoprotein metabolism. Summary The functions of ARH and PDZK1 suggest that other adaptor proteins may be found to control the activities of other cell-surface receptors in a similar tissue-specific fashion. Manipulation of the expression and/or activities of such adaptors might provide new insights into receptor physiology and these adaptors may prove to be attractive targets for pharmaceutical intervention in cholesterol metabolism-related disease processes.
Journal of Biological Chemistry | 2009
Sara A. Fenske; Ayce Yesilaltay; Rinku Pal; Kathleen Daniels; Caroline Barker; Verónica Quiñones; Attilio Rigotti; Monty Krieger; Olivier Kocher
PDZK1 is a four PDZ domain-containing scaffold protein that binds to scavenger receptor class B, type I (SR-BI), the high density lipoprotein receptor, by its first PDZ domain (PDZ1). PDZK1 knock-out mice exhibit a >95% decrease in hepatic SR-BI protein and consequently an ∼70% increase in plasma cholesterol in abnormally large high density lipoprotein particles. These defects are corrected by hepatic overexpression of full-length PDZK1 but not the PDZ1 domain alone, which partially restores SR-BI protein abundance but not cell surface expression or function. We have generated PDZK1 knock-out mice with hepatic expression of four PDZK1 transgenes encoding proteins with nested C-terminal truncations: pTEM, which lacks the three C-terminal residues (putative PDZ-binding motif), and PDZ1.2, PDZ1.2.3, or PDZ1.2.3.4, which contain only the first two, three, or four N-terminal PDZ domains, respectively, but not the remaining C-terminal sequences. Hepatic overexpression of pTEM restored normal hepatic SR-BI abundance, localization, and function. Hepatic overexpression of PDZ1.2 or PDZ1.2.3 partially restored SR-BI abundance (∼12 or ∼30% of wild type, respectively) but did not (PDZ1.2) or only slightly (PDZ1.2.3) restored hepatic SR-BI cell surface localization and function. Hepatic overexpression of PDZ1.2.3.4 completely restored SR-BI protein abundance, cell surface expression, and function (normalization of plasma cholesterol levels). Thus, all four PDZ domains in PDZK1, but not PDZ1-3 alone, are sufficient for its normal control of the abundance, localization, and therefore function of hepatic SR-BI, whereas the residues C-terminal to the PDZ4 domain, including the C-terminal putative PDZ-binding domain, are not required.
Biochimica et Biophysica Acta | 2008
Olivier Kocher; Ayce Yesilaltay; Ching-Hung Shen; Songwen Zhang; Kathleen Daniels; Rinku Pal; Jianzhu Chen; Monty Krieger
PDZK1 is a scaffold protein containing four PDZ protein interaction domains, which bind to the carboxy termini of a number of membrane transporter proteins, including ion channels (e.g., CFTR) and cell surface receptors. One of these, the HDL receptor, scavenger receptor class B type I (SR-BI), exhibits a striking, tissue-specific dependence on PDZK1 for its expression and activity. In PDZK1 knockout (KO) mice there is a marked reduction of SR-BI protein expression (approximately 95%) in the liver, but not in steroidogenic tissues or, as we show in this report, in bone marrow- or spleen-derived macrophages, or lung-derived endothelial cells. Because of hepatic SR-BI deficiency, PDZK1 KO mice exhibit dyslipidemia characterized by elevated plasma cholesterol carried in abnormally large HDL particles. Here, we show that inactivation of the PDZK1 gene promotes the development of aortic root atherosclerosis in apolipoprotein E (apoE) KO mice fed with a high fat/high cholesterol diet. However, unlike complete SR-BI-deficiency in SR-BI/apoE double KO mice, PDZK1 deficiency in PDZK1/apoE double knockout mice did not result in development of occlusive coronary artery disease or myocardial infarction, presumably because of their residual expression of SR-BI. These findings demonstrate that deficiency of an adaptor protein essential for normal expression of a lipoprotein receptor promotes atherosclerosis in a murine model. They also define PDZK1 as a member of the family of proteins that is instrumental in preventing cardiovascular disease by maintaining normal lipoprotein metabolism.
Journal of Biological Chemistry | 2008
Sara A. Fenske; Ayce Yesilaltay; Rinku Pal; Kathleen Daniels; Attilio Rigotti; Monty Krieger; Olivier Kocher
PDZK1 is a four-PDZ domain-containing scaffold protein that, via its first PDZ domain (PDZ1), binds to the C terminus of the high density lipoprotein (HDL) receptor scavenger receptor, class B, type I (SR-BI). Abolishing PDZK1 expression in PDZK1 knock-out (KO) mice leads to a post-transcriptional, tissue-specific decrease in SR-BI protein level and an increase in total plasma cholesterol carried in abnormally large HDL particles. Here we show that, although hepatic overexpression of PDZK1 restored normal SR-BI protein abundance and function in PDZK1 KO mice, hepatic overexpression of only the PDZ1 domain was not sufficient to restore normal SR-BI function. In wild-type mice, overexpression of the PDZ1 domain overcame the activity of the endogenous hepatic PDZK1, resulting in a 75% reduction in hepatic SR-BI protein levels and intracellular mislocalization of the remaining SR-BI. As a consequence, the plasma lipoproteins in PDZ1 transgenic mice resembled those in PDZK1 KO mice (hypercholesterolemia due to large HDL). These results indicate that the PDZ1 domain can control the abundance and localization, and therefore the function, of hepatic SR-BI and that structural features of PDZK1 in addition to its SR-BI-binding PDZ1 domain are required for normal hepatic SR-BI regulation.