Eliza Vasile
Massachusetts Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Eliza Vasile.
Journal of Experimental Medicine | 2002
Janice A. Nagy; Eliza Vasile; Dian Feng; Christian Sundberg; Lawrence F. Brown; Michael Detmar; Joel Lawitts; Laura E. Benjamin; Xiaolian Tan; Eleanor J. Manseau; Ann M. Dvorak; Harold F. Dvorak
Vascular permeability factor/vascular endothelial growth factor (VPF/VEGF, VEGF-A) is a multifunctional cytokine with important roles in pathological angiogenesis. Using an adenoviral vector engineered to express murine VEGF-A164, we previously investigated the steps and mechanisms by which this cytokine induced the formation of new blood vessels in adult immunodeficient mice and demonstrated that the newly formed blood vessels closely resembled those found in VEGF-A–expressing tumors. We now report that, in addition to inducing angiogenesis, VEGF-A164 also induces a strong lymphangiogenic response. This finding was unanticipated because lymphangiogenesis has been thought to be mediated by other members of the VPF/VEGF family, namely, VEGF-C and VEGF-D. The new “giant” lymphatics generated by VEGF-A164 were structurally and functionally abnormal: greatly enlarged with incompetent valves, sluggish flow, and delayed lymph clearance. They closely resembled the large lymphatics found in lymphangiomas/lymphatic malformations, perhaps implicating VEGF-A in the pathogenesis of these lesions. Whereas the angiogenic response was maintained only as long as VEGF-A was expressed, giant lymphatics, once formed, became VEGF-A independent and persisted indefinitely, long after VEGF-A expression ceased. These findings raise the possibility that similar, abnormal lymphatics develop in other pathologies in which VEGF-A is overexpressed, e.g., malignant tumors and chronic inflammation.
Nature Medicine | 2001
Sujit Basu; Janice A. Nagy; Soumitro Pal; Eliza Vasile; Isabelle A. Eckelhoefer; V. Susan Bliss; Eleanor J. Manseau; Partha Sarathi Dasgupta; Harold F. Dvorak; Debabrata Mukhopadhyay
Angiogenesis has an essential role in many important pathological and physiological settings. It has been shown that vascular permeability factor/vascular endothelial growth factor (VPF/VEGF), a potent cytokine expressed by most malignant tumors, has critical roles in vasculogenesis and both physiological and pathological angiogenesis. We report here that at non-toxic levels, the neurotransmitter dopamine strongly and selectively inhibited the vascular permeabilizing and angiogenic activities of VPF/VEGF. Dopamine acted through D2 dopamine receptors to induce endocytosis of VEGF receptor 2, which is critical for promoting angiogenesis, thereby preventing VPF/VEGF binding, receptor phosphorylation and subsequent signaling steps. The action of dopamine was specific for VPF/VEGF and did not affect other mediators of microvascular permeability or endothelial-cell proliferation or migration. These results reveal a new link between the nervous system and angiogenesis and indicate that dopamine and other D2 receptors, already in clinical use for other purposes, might have value in anti-angiogenesis therapy.
Journal of Cell Biology | 2002
Daniel Ungar; Toshihiko Oka; Elizabeth E. Brittle; Eliza Vasile; Vladimir V. Lupashin; Jon E. Chatterton; John E. Heuser; Monty Krieger; M. Gerard Waters
Multiprotein complexes are key determinants of Golgi apparatus structure and its capacity for intracellular transport and glycoprotein modification. Three complexes that have previously been partially characterized include (a) the Golgi transport complex (GTC), identified in an in vitro membrane transport assay, (b) the ldlCp complex, identified in analyses of CHO cell mutants with defects in Golgi-associated glycosylation reactions, and (c) the mammalian Sec34 complex, identified by homology to yeast Sec34p, implicated in vesicular transport. We show that these three complexes are identical and rename them the conserved oligomeric Golgi (COG) complex. The COG complex comprises four previously characterized proteins (Cog1/ldlBp, Cog2/ldlCp, Cog3/Sec34, and Cog5/GTC-90), three homologues of yeast Sec34/35 complex subunits (Cog4, -6, and -8), and a previously unidentified Golgi-associated protein (Cog7). EM of ldlB and ldlC mutants established that COG is required for normal Golgi morphology. “Deep etch” EM of purified COG revealed an ∼37-nm-long structure comprised of two similarly sized globular domains connected by smaller extensions. Consideration of biochemical and genetic data for mammalian COG and its yeast homologue suggests a model for the subunit distribution within this complex, which plays critical roles in Golgi structure and function.
Cancer Cell | 2009
Sharon Y. Gidekel Friedlander; Gerald C. Chu; Eric L. Snyder; Nomeda Girnius; Gregory Dibelius; Denise Crowley; Eliza Vasile; Ronald A. DePinho; Tyler Jacks
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal human malignancies. To investigate the cellular origin(s) of this cancer, we determined the effect of PDAC-relevant gene mutations in distinct cell types of the adult pancreas. We show that a subpopulation of Pdx1-expressing cells is susceptible to oncogenic K-Ras-induced transformation without tissue injury, whereas insulin-expressing endocrine cells are completely refractory to transformation under these conditions. However, chronic pancreatic injury can alter their endocrine fate and allow them to serve as the cell of origin for exocrine neoplasia. These results suggest that one mechanism by which inflammation and/or tissue damage can promote neoplasia is by altering the fate of differentiated cells that are normally refractory to oncogenic stimulation.
The FASEB Journal | 2001
Eliza Vasile; Yasuhiko Tomita; Lawrence F. Brown; Olivier Kocher; Harold F. Dvorak
VPF/VEGF acts selectively on the vascular endothelium to enhance permeability, induce cell migration and division, and delay replicative senescence. To understand the changes in gene expression during endothelial senescence, we investigated genes that were differentially expressed in early vs. late passage (senescent) human dermal endothelial cells (HDMEC) using cDNA array hybridization. Early passage HDMEC cultured with or without VPF/VEGF overexpressed 9 and underexpressed 6 genes in comparison with their senescent counterparts. Thymosin β‐10 expression was modulated by VPF/VEGF and was strikingly down‐regulated in senescent EC. The β‐thymosins are actin G‐sequestering peptides that regulate actin dynamics and are overexpressed in neoplastic transformation. We have also identified senescent EC in the human aorta at sites overlying atherosclerotic plaques. These EC expressed senescence‐associated neutral β‐galactosidase and, in contrast to adventitial microvessel endothelium, exhibited weak staining for thymosin β‐10. ISH performed on human malignant tumors revealed strong thymosin β‐10 expression in tumor blood vessels. This is the first report that Tβ‐10 expression is significantly reduced in senescent EC, that VPF/VEGF modulates thymosin β‐10 expression, and that EC can become senescent in vivo. The reduced expression of thymosin β‐10 may contribute to the senescent phenotype by reducing EC plasticity and thus impairing their response to migratory stimuli.—Vasile, E., Tomita, Y., Brown, L. F., Kocher, O., Dvorak, H. F. Differential expression of thymosin Β‐10 by early passage and senescent vascular endothelium is modulated by VPF/VEGF: evidence for senescent endothelial cells in vivo at sites of atherosclerosis. FASEB J. 15, 458‐466 (2001)
Proceedings of the National Academy of Sciences of the United States of America | 2003
Anne Braun; Songwen Zhang; Helena E. Miettinen; Shamsah Ebrahim; Teresa M. Holm; Eliza Vasile; Mark J. Post; Danita M. Yoerger; Michael H. Picard; Joshua L. Krieger; Nancy C. Andrews; Michael Simons; Monty Krieger
Mice with homozygous null mutations in the high-density lipoprotein receptor SR-BI (scavenger receptor class B, type I) and apolipoprotein E genes fed a low-fat diet exhibit a constellation of pathologies shared with human atherosclerotic coronary heart disease (CHD): hypercholesterolemia, occlusive coronary atherosclerosis, myocardial infarctions, cardiac dysfunction (heart enlargement, reduced systolic function and ejection fraction, and ECG abnormalities), and premature death (mean age 6 weeks). They also exhibit a block in RBC maturation and abnormally high plasma unesterified-to-total cholesterol ratio (0.8) with associated abnormal lipoprotein morphology (lamellar/vesicular and stacked discoidal particles reminiscent of those in lecithin/cholesterol acyltransferase deficiency and cholestasis). Treatment with the lipid-lowering, antiatherosclerosis, and antioxidation drug probucol extended life to as long as 60 weeks (mean 36 weeks), and at 5–6 weeks of age, virtually completely reversed the cardiac and most RBC pathologies and corrected the unesterified to total cholesterol ratio (0.3) and associated distinctive abnormal lipoprotein morphologies. Manipulation of the timing of administration and withdrawal of probucol could control the onset of death and suggested that critical pathological changes usually occurred in untreated double knockout mice between ≈3 (weaning) and 5 weeks of age and that probucol delayed heart failure even after development of substantial CHD. The ability of probucol treatment to modulate pathophysiology in the double knockout mice enhances the potential of this murine system for analysis of the pathophysiology of CHD and preclinical testing of new approaches for the prevention and treatment of cardiovascular disease.
Biomaterials | 2011
Thomas P. Kraehenbuehl; Lino Ferreira; Alison Hayward; Matthias Nahrendorf; André J. van der Vlies; Eliza Vasile; Ralph Weissleder; Robert Langer; Jeffrey A. Hubbell
We present use of a synthetic, injectable matrix metalloproteinase (MMP)-responsive, bioactive hydrogel as an in situ forming scaffold to deliver thymosin β4 (Tβ4), a pro-angiogenic and pro-survival factor, along with vascular cells derived from human embryonic stem cells (hESC) in ischemic injuries to the heart in a rat model. The gel was found to substitute the degrading extracellular matrix in the infarcted myocardium of rats and to promote structural organization of native endothelial cells, while some of the delivered hESC-derived vascular cells formed de novo capillaries in the infarct zone. Magnetic resonance imaging (MRI) revealed that the microvascular grafts effectively preserved contractile performance 3 d and 6 wk after myocardial infarction, attenuated left ventricular dilation, and decreased infarct size as compared to infarcted rats treated with PBS injection as a control (3 d ejection fraction, + ∼7%, P < 0.001; 6 wk ejection faction, + ∼12%, P < 0.001). Elevation in vessel density was observed in response to treatment, which may be due in part to elevations in human (donor)-derived cytokines EGF, VEGF and HGF (1 d). Thus, a clinically relevant matrix for dual delivery of vascular cells and drugs may be useful in engineering sustained tissue preservation and potentially regenerating ischemic cardiac tissue.
Circulation | 2005
Songwen Zhang; Michael H. Picard; Eliza Vasile; Yu Zhu; Robert L. Raffai; Karl H. Weisgraber; Monty Krieger
Background—Normal chow (low fat)–fed mice deficient in both the HDL receptor SR-BI and apolipoprotein E (SR-BI/apoE dKO) provide a distinctive model of coronary heart disease (CHD). They exhibit early-onset hypercholesterolemia characterized by unesterified cholesterol-rich abnormal lipoproteins (lamellar/vesicular and stacked discoidal particles), occlusive coronary atherosclerosis, spontaneous myocardial infarction, cardiac dysfunction, and premature death (≈6 weeks of age). Mice in which similar features of CHD could be induced with a lipid-rich diet would represent a powerful tool to study CHD. Methods and Results—To generate a diet-inducible model of CHD, we bred SR-BI-deficient (SR-BI KO) mice with hypomorphic apolipoprotein E mice (ApoeR61h/h) that express reduced levels of an apoE4-like murine apoE isoform and exhibit diet-induced hypercholesterolemia. When fed a normal chow diet, SR-BI KO/ApoeR61h/h mice did not exhibit early-onset atherosclerosis or CHD; the low expression level of the apoE4-like murine apoE was atheroprotective and cardioprotective. However, when fed an atherogenic diet rich in fat, cholesterol, and cholate, they rapidly developed hypercholesterolemia, atherosclerosis, and CHD, a response strikingly similar to that of SR-BI/apoE dKO mice fed a chow diet, and they died 32±6 days (50% mortality) after initiation of the high-fat feeding. Conclusions—The SR-BI KO/ApoeR61h/h mouse is a new model of diet-induced occlusive coronary atherosclerosis and CHD (myocardial infarction, cardiac dysfunction and premature death), allowing control of the age of onset, duration, severity, and possibly regression of disease. Thus, SR-BI KO/ApoeR61h/h mice have the potential to contribute to our understanding of CHD and its prevention and treatment.
Laboratory Investigation | 2006
Janice A. Nagy; Dian Feng; Eliza Vasile; Wendy Wong; Shu-Ching Shih; Ann M. Dvorak; Harold F. Dvorak
Malignant tumors generate new blood vessels by secreting growth factors, particularly members of the vascular permeability factor/vascular endothelial growth factor (VPF/VEGF) family. Overall, the new blood vessels that form are hyperpermeable to plasma proteins, a property that is thought to be important for generating new stroma. However, tumor blood vessels are structurally heterogeneous and include microvessels of at least the following distinct types: mother vessels (MV), glomeruloid microvascular proliferations (GMP), arterio-venous-like vascular malformations and capillaries. Our goal was to determine whether macromolecular tracers leaked from all or from only a subset of these vessel types and to elucidate the extravasation pathways. As blood vessels are only a minor component of tumors, and therefore, difficult to study in situ, we used an adenoviral vector to express VEGF-A164, the most important member of the VPF/VEGF family, in mouse tissues. So expressed, VEGF-A164 induces large numbers of surrogate vessels of each type found in tumors in a highly reproducible manner. Overall permeability to plasma proteins was assessed qualitatively with Evans blue dye and quantitatively with a dual tracer method employing radioactive albumin. Leaky vessels were identified by confocal microscopy (FITC-dextran) and by electron microscopy (ferritin). MV, and to a lesser extent GMP, were found to be hyperpermeable but capillaries and vascular malformations were not. Ferritin extravasated primarily by two trans-cellular routes, vesiculo-vacuolar organelles (VVOs) and fenestrae. This occurred despite a considerable reduction in VVO frequency as VVO membranes translocated to the plasma membrane during MV formation. However, reduction in the number and complexity of VVOs was offset by extensive endothelial cell thinning and a greatly shortened extravasation pathway. Extrapolating these findings to tumors predicts that only a subset of tumor vessels, MV and GMP, is hyperpermeable, and that measures of overall vessel permeability greatly underestimate the permeability of individual MV and GMP.
Journal of Histochemistry and Cytochemistry | 1999
Eliza Vasile; Qu Hong; Harold F. Dvorak; Ann M. Dvorak
In situ vascular endothelium is characterized by many cytoplasmic vesicles (caveolae) and vacuoles. In venules these are organized into prominent clusters called vesiculo-vacuolar organelles or VVOs. VVOs provide an important pathway for plasma protein extravasation in response to vasoactive mediators. In contrast, cultured endothelial cells isolated from many sources lack VVOs and generally have few caveolae. Our goal was to preserve VVOs in cultured endothelium. Bovine adrenal microvascular endothelial cells (BCEs) cultured on floating Matrigel-collagen Type I gels with vascular permeability factor/vascular endothelial growth factor (VPF/VEGF) exhibited typical VVOs by electron microscopy. Both in vivo and in culture VVOs were caveolin-positive by immunoelectron microscopy. On the basis of caveolin immunostaining, VVOs could also be detected by light (confocal) microscopy. When BCEs were cultured without VPF/VEGF, caveolin staining was finely punctate and electron microscopy confirmed the near absence of VVOs. BCE VVOs were sensitive to N-ethylmaleimide. Other types of endothelium cultured on Matrigel-collagen gels with or without VPF/VEGF exhibited few caveolae and no VVOs. Therefore, preservation of VVOs in cultured endothelium required a specific combination of endothelial cells (BCEs), surface matrix (Matrigel-collagen), and growth factor (VPF/VEGF). These endothelial cells should be useful for in vitro studies of trans-endothelial transport.