Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ayesha B. Alvero is active.

Publication


Featured researches published by Ayesha B. Alvero.


Cancer Research | 2006

TLR-4 Signaling Promotes Tumor Growth and Paclitaxel Chemoresistance in Ovarian Cancer

Michael G. Kelly; Ayesha B. Alvero; Rui Chen; Dan-Arin Silasi; Vikki M. Abrahams; Serena Chan; Irene Visintin; Thomas J. Rutherford; Gil Mor

Evidence suggests that an inflammatory profile of cytokines and chemokines persisting at a particular site would lead to the development of a chronic disease. Recent studies implicate bacterial infection as one possible link between inflammation and carcinogenesis; however, the crucial molecular pathways involved remain unknown. We hypothesized that one possible upstream signaling pathway leading to inflammation in carcinogenesis may be mediated by Toll-like receptors (TLR). We describe for the first time an adaptive mechanism acquired by ovarian cancer cells that allows them to promote a proinflammatory environment and develop chemoresistance. We propose that the TLR-4-MyD88 signaling pathway may be a risk factor for developing cancer and may represent a novel target for the development of biomodulators. Our work explains how bacterial products, such as lipopolysaccharide, can promote, directly from the tumor, the production of proinflammatory cytokines and the enhancement of tumor survival. In addition, we provide new evidence that links TLR-4 signaling, inflammation, and chemoresistance in ovarian cancer cells.


Clinical Cancer Research | 2008

Diagnostic Markers for Early Detection of Ovarian Cancer

Irene Visintin; Ziding Feng; Gary Longton; David C. Ward; Ayesha B. Alvero; Yinglei Lai; Jeannette Tenthorey; Aliza Leiser; Ruben Flores-Saaib; Herbert Yu; Masoud Azori; Thomas J. Rutherford; Peter E. Schwartz; Gil Mor

Purpose: Early detection would significantly decrease the mortality rate of ovarian cancer. In this study, we characterize and validate the combination of six serum biomarkers that discriminate between disease-free and ovarian cancer patients with high efficiency. Experimental Design: We analyzed 362 healthy controls and 156 newly diagnosed ovarian cancer patients. Concentrations of leptin, prolactin, osteopontin, insulin-like growth factor II, macrophage inhibitory factor, and CA-125 were determined using a multiplex, bead-based, immunoassay system. All six markers were evaluated in a training set (181 samples from the control group and 113 samples from OC patients) and a test set (181 sample control group and 43 ovarian cancer). Results: Multiplex and ELISA exhibited the same pattern of expression for all the biomarkers. None of the biomarkers by themselves were good enough to differentiate healthy versus cancer cells. However, the combination of the six markers provided a better differentiation than CA-125. Four models with <2% classification error in training sets all had significant improvement (sensitivity 84%-98% at specificity 95%) over CA-125 (sensitivity 72% at specificity 95%) in the test set. The chosen model correctly classified 221 out of 224 specimens in the test set, with a classification accuracy of 98.7%. Conclusions: We describe the first blood biomarker test with a sensitivity of 95.3% and a specificity of 99.4% for the detection of ovarian cancer. Six markers provided a significant improvement over CA-125 alone for ovarian cancer detection. Validation was performed with a blinded cohort. This novel multiplex platform has the potential for efficient screening in patients who are at high risk for ovarian cancer.


American Journal of Reproductive Immunology | 2007

Trophoblast-macrophage interactions: a regulatory network for the protection of pregnancy.

Stefan Fest; Paulomi Aldo; Vikki M. Abrahams; Irene Visintin; Ayesha B. Alvero; Rui Chen; Shawn L. Chavez; Roberto Romero; Gil Mor

Problem  Macrophages are one of the first immune cells observed at the implantation site. Their presence has been explained as the result of an immune response toward paternal antigens. The mechanisms regulating monocyte migration and differentiation at the implantation site are largely unknown. In the present study, we demonstrate that trophoblast cells regulate monocyte migration and differentiation. We propose that trophoblast cells ‘educate’ monocytes/macrophages to create an adequate environment that promote trophoblast survival.


Oncogene | 2008

Cancers take their Toll--the function and regulation of Toll-like receptors in cancer cells

Rui Chen; Ayesha B. Alvero; Dan-Arin Silasi; Karina Dahl Steffensen; Gil Mor

Cancer could be deemed as an abnormal and uncontrolled tissue repair process. Therefore, it would not be surprising that factors that function in the tissue repair process, such as cytokines, chemokines, growth factors and Toll-like receptor (TLR) ligands, as well as growth signals for compensatory proliferation, would also be key factors in regulating and enhancing cancer progression. The TLR pathways, which play a critical role in tissue repair, are also key regulators in cancer progression as well as chemoresistance. TLRs serve as cell surface sensors that can initiate pathways leading to proliferation and chemoresistance; as well as mediators that are able to regulate the infiltrating immune cells to provide further support for cancer progression.


Oncogene | 2010

TWISTing stemness, inflammation and proliferation of epithelial ovarian cancer cells through MIR199A2/214

Gang Yin; Rui Chen; Ayesha B. Alvero; Han-Hsuan Fu; Jennie Holmberg; Carlotta A. Glackin; Thomas J. Rutherford; Gil Mor

Cancer stem cells are responsible for sustaining the tumor and giving rise to proliferating and progressively differentiating cells. However, the molecular mechanisms regulating the process of cancer stem cell (CSC) differentiation is not clearly understood. Recently, we reported the isolation of the epithelial ovarian cancer (EOC) stem cells (type I/CD44+). In this study, we show that type I/CD44+ cells are characterized by low levels of both miR-199a and miR-214, whereas mature EOC cells (type II/CD44−) have higher levels of miR-199a and miR-214. Moreover, these two micro RNAs (miRNAs) are regulated as a cluster on pri-miR-199a2 within the human Dnm3os gene (GenBank FJ623959). This study identify Twist1 as a regulator of this unique miRNA cluster responsible for the regulation of the IKKβ/NF-κB and PTEN/AKT pathways and its association of ovarian CSC differentiation. Our data suggest that Twist1 may be an important regulator of ‘stemness’ in EOC cells. The regulation of MIR199A2/214 expression may be used as a potential therapeutic approach in EOC patients.


American Journal of Reproductive Immunology | 2007

Inflammation, cancer and chemoresistance: taking advantage of the toll-like receptor signaling pathway.

Rui Chen; Ayesha B. Alvero; Dan-Arin Silasi; Gil Mor

The association between chronic inflammation and cancer has long been observed. Furthermore, NF‐κB activation and the subsequent production of cytokines, chemokines, growth factors, and antiapoptotic proteins has been found to be involved in cancer progression and chemoresistance. However, the signals inducing NF‐κB in cancer cells are still not well understood. Here, we reviewed the association between chronic inflammation and cancer, the role of NF‐κB and its inhibitors as potential anticancer drugs, and Toll‐like receptors as possible signal initiators for NF‐κB activation and inflammation‐induced carcinogenesis and chemoresistance. Furthermore, we propose that, the stimulation of Toll‐like receptors by microbial components and/or endogenous ligands may represent the initial signal promoting a proinflammatory environment that will enhance tumor growth and chemoresistance.


Journal of Translational Medicine | 2007

The X-linked inhibitor of apoptosis protein (XIAP) is up-regulated in metastatic melanoma, and XIAP cleavage by Phenoxodiol is associated with Carboplatin sensitization

Harriet M. Kluger; Mary M. McCarthy; Ayesha B. Alvero; Mario Sznol; Stephan Ariyan; Robert L. Camp; David L. Rimm; Gil Mor

XIAP up-regulation is associated with chemotherapy resistance. Phenoxodiol causes XIAP degradation and chemotherapy sensitization in ovarian cancer. Here we assessed XIAP expression in melanomas, using tissue microarrays containing 436 melanomas and 336 nevi by a novel method of automated, quantitative analysis (AQUA). We used S100 to define pixels as melanoma (tumor mask) within the array spot, and measured XIAP expression using Cy5-conjugated antibodies within the mask. XIAP expression was significantly higher in melanomas than nevi (P < 0.0001), and higher in metastatic than primary lesions (P < 0.0001). We then assessed a panel of melanoma cell lines for XIAP expression, and found high expression in all cell lines. Three of the cell lines were assessed for Phenoxodiol and Carboplatin sensitivity; all were resistant to Carboplatin and showed variable sensitivity to Phenoxodiol. Pre-treating Phenoxodiol sensitive cells with Phenoxodiol prior to Carboplatin resulted in XIAP degradation, associated with Carboplatin sensitization and apoptosis, whereas exposing Phenoxodiol resistant cells to Phenoxodiol resulted in less XIAP degradation and minimal Carboplatin sensitization. We conclude that XIAP levels in clinical specimens are significantly higher in melanomas than their benign counterparts, and higher in metastatic than in primary specimens, suggesting an association with malignant progression and disease aggression. Melanoma resistance to Carboplatin is possibly due to XIAP over-expression. Phenoxodiol can sensitize melanoma cells to Carboplatin in vitro with corresponding XIAP degradation, although the precise target and mechanism of action of Phenoxodiol are subject to further assessment. Targeting XIAP warrants additional investigation as a therapeutic approach for metastatic melanoma.


Oncology Research | 2004

Resistance of ovarian carcinoma cells to docetaxel is XIAP dependent and reversible by phenoxodiol.

Eva Sapi; Ayesha B. Alvero; Wei Chen; David M. O'Malley; Xiao-Ying Hao; Bambang Dwipoyono; Manish Garg; Marijke Kamsteeg; Thomas J. Rutherford; Gil Mor

Although several pathways have been proposed to explain chemoresistance, all lead to some specific defect in the mechanism of apoptosis. The objective of this study was to characterize the molecular mechanisms of drug resistance to docetaxel in epithelial ovarian cancer cells (EOC) and the use of phenoxodiol as a chemosensitizer. Four established and 12 primary cultures of ovarian carcinoma cell lines (EOC) were treated with docetaxel (5-500 ng/ml) for 24 and/or 48 h. In all the studied cell lines, the best response was seen using 500 ng/ml of docetaxel. Sensitive cell lines were identified as those with IC50 < 100 ng/ml for 48 h while resistant cell lines were identified as those with IC50 > 100 ng/ml. The morphological features of apoptosis and the activation of caspases were seen only in the sensitive cell lines determined by Hoechst staining and Caspase Glo assay. Although X-linked inhibitor of apoptosis protein (XIAP) was expressed in all EOC cells, it was only inactivated in chemosensitive cells. We confirmed the role of XIAP in docetaxel resistance by downregulation of XIAP expression using RNA interference (RNAi) as well as by pretreatment with phenoxodiol. Our results indicate that 1) docetaxel induces its cytotoxic effect through the activation of apoptosis; 2) caspase activation relies on the removal of XIAP; and 3) phenoxodiol restores sensitivity in docetaxel-resistant EOC cells. We demonstrate that phenoxodiol, by interfering with XIAP activity, functions as a chemosensitizer to docetaxel and could provide a more effective treatment for refractory ovarian cancer.


American Journal of Reproductive Immunology | 2012

Modulation and recruitment of inducible regulatory T cells by first trimester trophoblast cells.

Rosanna Ramhorst; Laura Fraccaroli; Paulomi Aldo; Ayesha B. Alvero; Ingrid Cardenas; Claudia Pérez Leirós; Gil Mor

Citation Ramhorst R, Fraccaroli L, Aldo P, Alvero AB, Cardenas I, Leirós CP, Mor G. Modulation and recruitment of inducible regulatory T cells by first trimester trophoblast cells. Am J Reprod Immunol 2012; 67: 17–27


Oncogene | 2013

Constitutive proteasomal degradation of TWIST-1 in epithelial–ovarian cancer stem cells impacts differentiation and metastatic potential

Gang Yin; Ayesha B. Alvero; Vinicius Craveiro; Jennie Holmberg; Han-Hsuan Fu; Michele K. Montagna; Yang Yang; Ilana Chefetz-Menaker; Sudhakar V. Nuti; Michael R. Rossi; Dan-Arin Silasi; Thomas J. Rutherford; Gil Mor

Epithelial–mesenchymal transition (EMT) is a critical process for embryogenesis but is abnormally activated during cancer metastasis and recurrence. This process enables epithelial cancer cells to acquire mobility and traits associated with stemness. It is unknown whether epithelial stem cells or epithelial cancer stem cells are able to undergo EMT, and what molecular mechanism regulates this process in these specific cell types. We found that epithelial–ovarian cancer stem cells (EOC stem cells) are the source of metastatic progenitor cells through a differentiation process involving EMT and mesenchymal–epithelial transition (MET). We demonstrate both in vivo and in vitro the differentiation of EOC stem cells into mesenchymal spheroid-forming cells (MSFCs) and their capacity to initiate an active carcinomatosis. Furthermore, we demonstrate that human EOC stem cells injected intraperitoneally in mice are able to form ovarian tumors, suggesting that the EOC stem cells have the ability to ‘home’ to the ovaries and establish tumors. Most interestingly, we found that TWIST-1 is constitutively degraded in EOC stem cells, and that the acquisition of TWIST-1 requires additional signals that will trigger the differentiation process. These findings are relevant for understanding the differentiation and metastasis process in EOC stem cells.

Collaboration


Dive into the Ayesha B. Alvero's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge