Natalia J. Sumi
Yale University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Natalia J. Sumi.
ACS Chemical Biology | 2015
Natalia J. Sumi; Brent M. Kuenzi; Claire E. Knezevic; Lily L. Remsing Rix; Uwe Rix
Several selective CDK4/6 inhibitors are in clinical trials for non-small cell lung cancer (NSCLC). Palbociclib (PD0332991) is included in the phase II/III Lung-MAP trial for squamous cell lung carcinoma (LUSQ). We noted differential cellular activity between palbociclib and the structurally related ribociclib (LEE011) in LUSQ cells. Applying an unbiased mass spectrometry-based chemoproteomics approach in H157 cells and primary tumor samples, we here report distinct proteome-wide target profiles of these two drug candidates in LUSQ, which encompass novel protein and, for palbociclib only, lipid kinases. In addition to CDK4 and 6, we observed CDK9 as a potent target of both drugs. Palbociclib interacted with several kinases not targeted by ribociclib, such as casein kinase 2 and PIK3R4, which regulate autophagy. Furthermore, palbociclib engaged several lipid kinases, most notably, PIK3CD and PIP4K2A/B/C. Accordingly, we observed modulation of autophagy and inhibition of AKT signaling by palbociclib but not ribociclib.
Oncogene | 2015
Yang Yang-Hartwich; Marta Gurrea Soteras; Z P Lin; Jennie Holmberg; Natalia J. Sumi; Vinicius Craveiro; M Liang; E Romanoff; J Bingham; F Garofalo; Ayesha B. Alvero; Gil Mor
High-grade serous ovarian carcinoma (HGSOC), the most lethal gynecological cancer, often leads to chemoresistant diseases. The p53 protein is a key transcriptional factor regulating cellular homeostasis. A majority of HGSOCs have inactive p53 because of genetic mutations. However, genetic mutation is not the only cause of p53 inactivation. The aggregation of p53 protein has been discovered in different types of cancers and may be responsible for impairing the normal transcriptional activation and pro-apoptotic functions of p53. We demonstrated that in a unique population of HGSOC cancer cells with cancer stem cell properties, p53 protein aggregation is associated with p53 inactivation and platinum resistance. When these cancer stem cells differentiated into their chemosensitive progeny, they lost tumor-initiating capacity and p53 aggregates. In addition to the association of p53 aggregation and chemoresistance in HGSOC cells, we further demonstrated that the overexpression of a p53-positive regulator, p14ARF, inhibited MDM2-mediated p53 degradation and led to the imbalance of p53 turnover that promoted the formation of p53 aggregates. With in vitro and in vivo models, we demonstrated that the inhibition of p14ARF could suppress p53 aggregation and sensitize cancer cells to platinum treatment. Moreover, by two-dimensional gel electrophoresis and mass spectrometry we discovered that the aggregated p53 may function uniquely by interacting with proteins that are critical for cancer cell survival and tumor progression. Our findings help us understand the poor chemoresponse of a subset of HGSOC patients and suggest p53 aggregation as a new marker for chemoresistance. Our findings also suggest that inhibiting p53 aggregation can reactivate p53 pro-apoptotic function. Therefore, p53 aggregation is a potential therapeutic target for reversing chemoresistance. This is paramount for improving ovarian cancer patients’ responses to chemotherapy, and thus increasing their survival rate.
Cancer Medicine | 2013
Vinicius Craveiro; Yang Yang-Hartwich; Jennie Holmberg; Natalia J. Sumi; John Pizzonia; Brian Griffin; Sabrina K. Gill; Dan-Arin Silasi; Masoud Azodi; Thomas J. Rutherford; Ayesha B. Alvero; Gil Mor
Epithelial ovarian cancer (EOC) is the most lethal gynecologic malignancy. Despite initial responsiveness, 80% of EOC patients recur and present with chemoresistant and a more aggressive disease. This suggests an underlying biology that results in a modified recurrent disease, which is distinct from the primary tumor. Unfortunately, the management of recurrent EOC is similar to primary disease and does not parallel the molecular changes that may have occurred during the process of rebuilding the tumor. We describe the characterization of unique in vitro and in vivo ovarian cancer models to study the process of recurrence. The in vitro model consists of GFP+/CD44+/MyD88+ EOC stem cells and mCherry+/CD44−/MyD88− EOC cells. The in vivo model consists of mCherry+/CD44+/MyD88+ EOC cells injected intraperitoneally. Animals received four doses of Paclitaxel and response to treatment was monitored by in vivo imaging. Phenotype of primary and recurrent disease was characterized by quantitative polymerase chain reaction (qPCR) and Western blot analysis. Using the in vivo and in vitro models, we confirmed that chemotherapy enriched for CD44+/MyD88+ EOC stem cells. However, we observed that the surviving CD44+/MyD88+ EOC stem cells acquire a more aggressive phenotype characterized by chemoresistance and migratory potential. Our results highlight the mechanisms that may explain the phenotypic heterogeneity of recurrent EOC and emphasize the significant plasticity of ovarian cancer stem cells. The significance of our findings is the possibility of developing new venues to target the surviving CD44+/MyD88+ EOC stem cells as part of maintenance therapy and therefore preventing recurrence and metastasis, which are the main causes of mortality in patients with ovarian cancer.
Scientific Reports | 2015
Yang Yang-Hartwich; Gurrea-Soteras M; Natalia J. Sumi; Won Duk Joo; Jennie Holmberg; Craveiro; Ayesha B. Alvero; Gil Mor
The mortality rate of ovarian cancer remains high due to late diagnosis and recurrence. A fundamental step toward improving detection and treatment of this lethal disease is to understand its origin. A growing number of studies have revealed that ovarian cancer can develop from multiple extra-ovarian origins, including fallopian tube, gastrointestinal tract, cervix and endometriosis. However, the mechanism leading to their ovarian localization is not understood. We utilized in vitro, ex vivo, and in vivo models to recapitulate the process of extra-ovarian malignant cells migrating to the ovaries and forming tumors. We provided experimental evidence to support that ovulation, by disrupting the ovarian surface epithelium and releasing chemokines/cytokines, promotes the migration and adhesion of malignant cells to the ovary. We identified the granulosa cell-secreted SDF-1 as a main chemoattractant that recruits malignant cells towards the ovary. Our findings revealed a potential molecular mechanism of how the extra-ovarian cells can be attracted by the ovary, migrate to and form tumors in the ovary. Our data also supports the association between increased ovulation and the risk of ovarian cancer. Understanding this association will lead us to the development of more specific markers for early detection and better prevention strategies.
Cancer Research | 2017
Aria Vaishnavi; Laura Schubert; Uwe Rix; Lindsay Marek; Anh T. Le; Stephen B. Keysar; Magdalena J. Glogowska; Matthew A. Smith; Severine Kako; Natalia J. Sumi; Kurtis D. Davies; Kathryn E. Ware; Marileila Varella-Garcia; Eric B. Haura; Antonio Jimeno; Lynn E. Heasley; Dara L. Aisner; Robert C. Doebele
Oncogenic kinase fusions of ALK, ROS1, RET, and NTRK1 act as drivers in human lung and other cancers. Residual tumor burden following treatment of ALK or ROS1+ lung cancer patients with oncogene-targeted therapy ultimately enables the emergence of drug-resistant clones, limiting the long-term effectiveness of these therapies. To determine the signaling mechanisms underlying incomplete tumor cell killing in oncogene-addicted cancer cells, we investigated the role of EGFR signaling in drug-naïve cancer cells harboring these oncogene fusions. We defined three distinct roles for EGFR in the response to oncogene-specific therapies. First, EGF-mediated activation of EGFR blunted fusion kinase inhibitor binding and restored fusion kinase signaling complexes. Second, fusion kinase inhibition shifted adaptor protein binding from the fusion oncoprotein to EGFR. Third, EGFR enabled bypass signaling to critical downstream pathways such as MAPK. While evidence of EGFR-mediated bypass signaling has been reported after ALK and ROS1 blockade, our results extended this effect to RET and NTRK1 blockade and uncovered the other additional mechanisms in gene fusion-positive lung cancer cells, mouse models, and human clinical specimens before the onset of acquired drug resistance. Collectively, our findings show how EGFR signaling can provide a critical adaptive survival mechanism that allows cancer cells to evade oncogene-specific inhibitors, providing a rationale to cotarget EGFR to reduce the risks of developing drug resistance. Cancer Res; 77(13); 3551-63. ©2017 AACR.
International Journal of Cancer | 2015
Emiliano Cocco; Erik M. Shapiro; Sara Gasparrini; Salvatore Lopez; Carlton L. Schwab; Stefania Bellone; Ileana Bortolomai; Natalia J. Sumi; Elena Bonazzoli; Roberta Nicoletti; Yang Deng; W. Mark Saltzman; Caroline J. Zeiss; Floriana Centritto; Jonathan Black; Dan-Arin Silasi; Elena Ratner; Masoud Azodi; Thomas J. Rutherford; Peter E. Schwartz; Sergio Pecorelli; Alessandro D. Santin
Identification of micrometastatic disease at the time of surgery remains extremely challenging in ovarian cancer patients. We used fluorescence microscopy, an in vivo imaging system and a fluorescence stereo microscope to evaluate fluorescence distribution in Claudin‐3‐ and ‐4‐overexpressing ovarian tumors, floating tumor clumps isolated from ascites and healthy organs. To do so, mice harboring chemotherapy‐naïve and chemotherapy‐resistant human ovarian cancer xenografts or patient‐derived xenografts (PDXs) were treated with the carboxyl‐terminal binding domain of the Clostridium perfringens enterotoxin (c‐CPE) conjugated to FITC (FITC‐c‐CPE) or the near‐infrared (NIR) fluorescent tag IRDye CW800 (CW800‐c‐CPE) either intraperitoneally (IP) or intravenously (IV). We found tumor fluorescence to plateau at 30 min after IP injection of both the FITC‐c‐CPE and the CW800‐c‐CPE peptides and to be significantly higher than in healthy organs (p < 0.01). After IV injection of CW800‐c‐CPE, tumor fluorescence plateaued at 6 hr while the most favorable tumor‐to‐background fluorescence ratio (TBR) was found at 48 hr in both mouse models. Importantly, fluorescent c‐CPE was highly sensitive for the in vivo visualization of peritoneal micrometastatic tumor implants and the identification of ovarian tumor spheroids floating in malignant ascites that were otherwise not detectable by conventional visual observation. The use of the fluorescent c‐CPE peptide may represent a novel and effective optical approach at the time of primary debulking surgery for the real‐time detection of micrometastatic ovarian disease overexpressing the Claudin‐3 and ‐4 receptors or the identification of residual disease at the time of interval debulking surgery after neoadjuvant chemotherapy treatment.
Molecular Cancer Therapeutics | 2016
Ayesha B. Alvero; Andrew Heaton; Eydis Lima; Mary Pitruzzello; Natalia J. Sumi; Yang Yang-Hartwich; Carlos Cardenas; Sahra Steinmacher; Dan-Arin Silasi; David A. Brown; Gil Mor
Chemoresistance is a major hurdle in the management of patients with epithelial ovarian cancer and is responsible for its high mortality. Studies have shown that chemoresistance is due to the presence of a subgroup of cancer cells with stemness properties and a high capacity for tumor repair. We have developed a library of super-benzopyran analogues to generate potent compounds that can induce cell death in chemoresistant cancer stem cells. TRX-E-002-1 is identified as the most potent analogue and can induce cell death in all chemoresistant CD44+/MyD88+ ovarian cancer stem cells tested (IC50 = 50 nmol/L). TRX-E-002-1 is also potent against spheroid cultures formed from cancer stem cells, chemosensitive CD44−/MyD88− ovarian cancer cells, and heterogeneous cultures of ovarian cancer cells. Cell death was associated with the phosphorylation and increased levels of c-Jun and induction of caspases. In vivo, TRX-E-002-1 given as daily intraperitoneal monotherapy at 100 mg/kg significantly decreased intraperitoneal tumor burden compared with vehicle control. When given in combination with cisplatin, animals receiving the combination of cisplatin and TRX-E-002-1 showed decreased tumor burden compared with each monotherapy. Finally, TRX-E-002-1 given as maintenance treatment after paclitaxel significantly delayed disease recurrence. Our results suggest that TRX-E-002-1 may fill the current need for better therapeutic options in the control and management of recurrent ovarian cancer and may help improve patient survival. Mol Cancer Ther; 15(6); 1279–90. ©2016 AACR.
Journal of Visualized Experiments | 2014
Natalia J. Sumi; Eydis Lima; John Pizzonia; Sean Orton; Vinicius Craveiro; Wonduk Joo; Jennie Holmberg; Marta Gurrea; Yang Yang-Hartwich; Ayesha B. Alvero; Gil Mor
Epithelial ovarian cancer is the most lethal gynecologic malignancy in the United States. Although patients initially respond to the current standard of care consisting of surgical debulking and combination chemotherapy consisting of platinum and taxane compounds, almost 90% of patients recur within a few years. In these patients the development of chemoresistant disease limits the efficacy of currently available chemotherapy agents and therefore contributes to the high mortality. To discover novel therapy options that can target recurrent disease, appropriate animal models that closely mimic the clinical profile of patients with recurrent ovarian cancer are required. The challenge in monitoring intra-peritoneal (i.p.) disease limits the use of i.p. models and thus most xenografts are established subcutaneously. We have developed a sensitive optical imaging platform that allows the detection and anatomical location of i.p. tumor mass. The platform includes the use of optical reporters that extend from the visible light range to near infrared, which in combination with 2-dimensional X-ray co-registration can provide anatomical location of molecular signals. Detection is significantly improved by the use of a rotation system that drives the animal to multiple angular positions for 360 degree imaging, allowing the identification of tumors that are not visible in single orientation. This platform provides a unique model to non-invasively monitor tumor growth and evaluate the efficacy of new therapies for the prevention or treatment of recurrent ovarian cancer.
Scientific Reports | 2017
Ayesha B. Alvero; Dongin Kim; Eydis Lima; Natalia J. Sumi; Jung Seok Lee; Carlos Cardenas; Mary Pitruzzello; Dan-Arin Silasi; Natalia Buza; Tarek M. Fahmy; Gil Mor
Patients with epithelial ovarian cancer have the best overall survival when maximal surgical effort is accomplished. However, despite numerous technological advances, surgery still relies primarily on white-light reflectance and the surgeon’s vision. As such, micrometastases are usually missed and most patients clinically classified as a complete responder eventually recur and succumb to the disease. Our objective is to develop optical enhancers which can aid in the visualization of ovarian cancer micrometastasis. To this end we developed a nanoparticle (NP) platform, which is specifically targeted to the tumor microenvironment. Targeting is achieved by coating FDA-approved PLGA-PEG NP with the peptide sequence RGD, which binds with high affinity to αVβ3 integrins present in both the tumor-associated neovasculature and on the surface of ovarian cancer cells. Administration of the NP platform carrying fluorescent dyes to mice bearing intraperitoneal ovarian cancer allowed visualization of tumor-associated vasculature and its contrast against normal blood vessels. More importantly, we demonstrate the visualization of intraperitoneal ovarian cancer micrometastasis as small as 100 μm with optimal resolution. Finally, we demonstrate that the fluorescent dye cargo was able to penetrate intra-tumorally. Such modality could be used to allow microscopic surgical debulking to assure maximal surgical effort.
Cancer Research | 2013
Ayesha B. Alvero; Natalia J. Sumi; Vinicius Craveiro; Won Duk Joo; Yang Yang-Hartwich; Gil Mor
Background: Epithelial ovarian cancer (EOC) is the most lethal of all gynecologic malignancies. Despite initial responsiveness to first-line standard of care, consisting of surgical debulking and chemotherapy, 8 out of 10 patients recur. In the recurrence setting, the presentation of widespread micrometastasis, which limits the usefulness of surgery, is complicated by concurrent presentation of chemoresistance. Currently, no adequate therapy is able to prevent or treat recurrence. Consequently, therapies directed against control of tumor burden can improve prognosis in EOC patients. Recently we reported the characterization of CD44+/MyD88+ EOC cells with tumor-initiating properties and inherent chemoresistance. In addition, we have identified ME-344, a novel isoflavone derivate, with potent capacity to induce cell death in these cells. Furthermore, we have developed an intra-peritoneal (i.p.) in vivo model of EOC recurrence based on the capacity of these cells to survive chemotherapy and renew the tumor. Using this model, we show the potential efficacy of ME-344 in delaying carcinomatosis and decreasing tumor burden. Methods: CD44+/MyD88+/mCherry+ EOC stem cells are injected i.p. in nude mice. Tumors are detected and consequently followed by live in vivo imaging using In Vivo FX System. Once tumors are detected, mice received 4 doses of 12 mg/kg i.p. Paclitaxel q3d or until the animals are free of disease. Mice were then randomized to maintenance with Vehicle or ME-344 (100 mg/kg i.p. q3d) and further monitored for recurrence. Recurrence is defined as appearance of tumors with ROI interior area > 2000. Tumor growth delay is defined as the difference in days when treated and control groups reach the maximal tumor burden set at ROI interior area = 10,000. Results: Mice exhibited recurrence with an average time of 6 days in the Vehicle group and 7 days in the ME-344 group. However, a significant delay in tumor kinetics was observed in the group maintained with ME-344. Maximal tumor burden, defined as ROI interior area = 10,000, was reached in the control group within 24 days and in the ME-344 group within 39 days. Thus, tumor growth was delayed for 15 days. Conclusion: Maintenance with ME-344 is able to decrease tumor burden in this very aggressive in vivo model of EOC recurrence. In this study, we show a significant delay in tumor kinetics in mice that were maintained with ME-344 following initial response to Paclitaxel. Decreasing and delaying metastatic load will allow more optimal surgical debulking and may improve survival in EOC patients. These results suggest the potential value of ME-344 therapy after 1st line standard of care in EOC patients. Citation Format: Ayesha B. Alvero, Natalia Sumi, Vinicius Craveiro, Won Duk Joo, Yang Yang-Hartwich, Gil Mor. ME-344 delays tumor kinetics in an ovarian cancer in vivo recurrence model. [abstract]. In: Proceedings of the 104th Annual Meeting of the American Association for Cancer Research; 2013 Apr 6-10; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2013;73(8 Suppl):Abstract nr LB-286. doi:10.1158/1538-7445.AM2013-LB-286